[1] |
FENG J C, YAN J, WANG Y, et al. Methane mitigation: Learning from the natural marine environment[J]. Innovation (Cambridge (Mass. )), 2022, 3(5): 100297.
|
[2] |
WEBER T, WISEMAN N A, KOCK A. Global ocean methane emissions dominated by shallow coastal waters[J]. Nature Communications, 2019, 10(1): 4584. doi: 10.1038/s41467-019-12541-7
|
[3] |
GAO J, GUAN C, ZHANG B. China's CH4 emissions from coal mining: A review of current bottom-up inventories[J]. Science of the Total Environment, 2020, 725: 138295. doi: 10.1016/j.scitotenv.2020.138295
|
[4] |
LAANBROEK H J. Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review[J]. Annals of Botany, 2010, 105(1): 141-153. doi: 10.1093/aob/mcp201
|
[5] |
ASAKAWA S. Ecology of methanogenic and methane-oxidizing microorganisms in paddy soil ecosystem[J]. Soil Science and Plant Nutrition, 2021, 67(5): 520-526. doi: 10.1080/00380768.2021.1953355
|
[6] |
CHOWDHURY T R, DICK R P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands[J]. Applied Soil Ecology, 2013, 65: 8-22. doi: 10.1016/j.apsoil.2012.12.014
|
[7] |
YANG Y Y, ZHAO Q, CUI Y H, et al. Spatio-temporal variation of sediment methanotrophic microorganisms in a large eutrophic lake[J]. Microbial Ecology, 2016, 71(1): 9-17. doi: 10.1007/s00248-015-0667-7
|
[8] |
DENG Y C, CUI X Y, HERNANDEZ M, et al. Microbial diversity in hummock and hollow soils of three wetlands on the qinghai-tibetan plateau revealed by 16s rrna pyrosequencing[J]. PLoS One, 2014, 9(7): e103115. doi: 10.1371/journal.pone.0103115
|
[9] |
GAO C H, ZHANG S, DING Q S, et al. Source or sink? A study on the methane flux from mangroves stems in zhangjiang estuary, southeast coast of china[J]. Science of the Total Environment, 2021, 788: 147782. doi: 10.1016/j.scitotenv.2021.147782
|
[10] |
GLASS J, ORPHAN V. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide[J]. Frontiers in Microbiology, 2012, 3: 61.
|
[11] |
ETTWIG K F, ZHU B, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796.
|
[12] |
LOVLEY D R. Syntrophy goes electric: Direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71: 643-664. doi: 10.1146/annurev-micro-030117-020420
|
[13] |
ELUL M, RUBIN-BLUM M, RONEN Z, et al. Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in lake kinneret iron-rich methanic sediments[J]. Biogeosciences, 2021, 18(6): 2091-2106. doi: 10.5194/bg-18-2091-2021
|
[14] |
LI B, TAO Y, MAO Z, et al. Iron oxides act as an alternative electron acceptor for aerobic methanotrophs in anoxic lake sediments[J]. Water Research, 2023, 234: 119833. doi: 10.1016/j.watres.2023.119833
|
[15] |
KALYUZHNAYA M G, PURI A W, LIDSTROM M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29: 142-152. doi: 10.1016/j.ymben.2015.03.010
|
[16] |
HORNIBROOK E R C, BOWES H L, CULBERT A, et al. Methanotrophy potential versus methane supply by pore water diffusion in peatlands[J]. Biogeosciences, 2009, 6(8): 1490-1504.
|
[17] |
XING X, WU H, LUO M, et al. Effects of organic chemicals on growth of methylosinus trichosporium ob3b[J]. Biochemical Engineering Journal, 2006, 31(2): 113-117. doi: 10.1016/j.bej.2006.06.001
|
[18] |
ALSAYED A, FERGALA A, KHATTAB S, et al. Kinetics of type i methanotrophs mixed culture enriched from waste activated sludge[J]. Biochemical Engineering Journal, 2018, 132: 60-67. doi: 10.1016/j.bej.2018.01.003
|
[19] |
CREVECOEUR S, VINCENT W F, COMTE J, et al. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds[J]. PLoS One, 2017, 12(11): e0188223. doi: 10.1371/journal.pone.0188223
|
[20] |
黄河三角洲农田退耕年限对土壤不同形态氧化铁含量及其分布的影响 [J]. 生态学杂志, 2023, 42(10): 2359-2367.
|
[21] |
MILLER J A, KALYUZHNAYA M G, NOYES E, et al. Labrys methylaminiphilus sp. Nov. , a novel facultatively methylotrophic bacterium from a freshwater lake sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55( 3): 1247-1253.
|
[22] |
阎磊. 内蒙古湖泊湿地沉积物甲烷氧化菌群落多样性及环境驱动因素研究[D]. 内蒙古大学, 2023.
|
[23] |
DENG Y C, LIU Y Q, DUMONT M, et al. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the tibetan plateau[J]. Microbial Ecology, 2017, 73(1): 101-110. doi: 10.1007/s00248-016-0879-5
|
[24] |
ZHANG Z, XU E, ZHANG H. Complex network and redundancy analysis of spatial–temporal dynamic changes and driving forces behind changes in oases within the tarim basin in northwestern china[J]. Catena, 2021, 201: 105216. doi: 10.1016/j.catena.2021.105216
|
[25] |
艾佳, 吕杨, 钟雄, 等. 贵州草海喀斯特高原湖泊湿地甲烷氧化菌群落特征及功能探析[J]. 湖泊科学, 2022, 34(3): 906-918. doi: 10.18307/2022.0317
|
[26] |
艾佳, 吕杨, 李彦澄, 等. 特殊环境中甲烷氧化菌的研究进展[J]. 应用生态学报, 2021, 32(4): 1509-1517.
|
[27] |
ZHAO J, CAI Y F, JIA Z J. The ph-based ecological coherence of active canonical methanotrophs in paddy soils[J]. Biogeosciences, 2020, 17(6): 1451-1462. doi: 10.5194/bg-17-1451-2020
|
[28] |
KANG S, CHOI W. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle[J]. Environmental science technology, 2009, 43(3): 878-83. doi: 10.1021/es801705f
|
[29] |
WANG J, XIE Z M, WANG Y X, et al. Synergy between indigenous bacteria and extracellular electron shuttles enhances transformation and mobilization of fe(Ⅲ)/as(Ⅴ)[J]. Science of the Total Environment, 2021, 783: 147002. doi: 10.1016/j.scitotenv.2021.147002
|
[30] |
BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
|
[31] |
VOROBEV A V, BAANI M, DORONINA N V, et al. Methyloferula stellata gen. Nov. , sp. Nov. , an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase[J]. International Journal of Systematic and Evolutionary Microbiologyol, 2011, 61(10): 2456-2463.
|
[32] |
CHANDLER L, HARFORD A J, HOSE G C, et al. Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream[J]. Environmental Pollution, 2021, 284: 117318. doi: 10.1016/j.envpol.2021.117318
|
[33] |
LU Y Z, FU L, LI N, et al. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes[J]. Chemosphere, 2018, 198: 370-376. doi: 10.1016/j.chemosphere.2018.01.172
|
[34] |
VAN LE A, STRAUB D, PLANER-FRIEDRICH B, et al. Microbial communities contribute to the elimination of as, fe, mn, and NH4+ from groundwater in household sand filters[J]. Science of the Total Environment, 2022, 838: 156496. doi: 10.1016/j.scitotenv.2022.156496
|
[35] |
HE X, XI B, WEI Z, et al. Fluorescence excitation–emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials, 2011, 190(1): 293-299.
|
[36] |
廖珣, 李彦澄, 张玉多, 等. 基于甲烷氧化菌的地下水硝酸盐还原效能及功能微生物研究 [J/OL]. 环境工程: [2023-08-27]. https://kns.cnki.net/kcms/detail/11.2097.X.20230411.1024.002.html.
|
[37] |
杨金强, 赵南京, 殷高方, 等. 城市生活污水处理过程三维荧光光谱在线监测分析方法[J]. 光谱学与光谱分析, 2020, 40(7): 1993-1997.
|
[38] |
CHAI F, LI L, XUE S, et al. Auxiliary voltage enhanced microbial methane oxidation co-driven by nitrite and sulfate reduction[J]. Chemosphere, 2020, 250: 126259. doi: 10.1016/j.chemosphere.2020.126259
|
[39] |
GERKE J. Phytate (inositol hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. A review[J]. Plants (Basel), 2015, 4(2): 253-66.
|
[40] |
ZHANG Y, SUN X, BIAN W, et al. The key role of persistent free radicals on the surface of hydrochar and pyrocarbon in the removal of heavy metal-organic combined pollutants[J]. Bioresource Technology, 2020, 318: 124046. doi: 10.1016/j.biortech.2020.124046
|
[41] |
白新月, 陈予珂, 黄丹丹, 等. 富铁炭对填埋覆土层甲烷氧化主导微生物活动的影响[J]. 中国环境科学, 2022, 42(2): 787-793.
|
[42] |
DAS S, JENA S N, ISLAM BHUIYAN M S, et al. Mechanism of slag-based silicate fertilizer suppressing methane emissions from paddies[J]. Journal of Cleaner Production, 2022, 373: 133799. doi: 10.1016/j.jclepro.2022.133799
|
[43] |
ACHTNICH C, BAK F, CONRAD R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil[J]. Biology and Fertility of Soils, 1995, 19(1): 65-72. doi: 10.1007/BF00336349
|