[1] FERNANDEZ Y, MARANON E, SOONS J, et al. Denitrification of high nitrate concentration wastewater using alternative carbon sources[J]. Journal of Hazardous Materials, 2010, 173(1): 682-688.
[2] NISINI E, SANTULLI C, CERUTI A, et al. High speed impact properties of carbon-basalt-flax dhec composites compared with pure carbon fibre composites[J]. Composite Structures, 2018, 192: 165-172. doi: 10.1016/j.compstruct.2018.02.058
[3] VOLOKITA M, ABEHOVICH A, SOARES M, et al. Denitrification of groundwater using cotton as energy source[J]. Water Science Technology, 1996, 34(1): 379-385.
[4] 王允, 张旭, 张大奕, 等. 用于地下水原位生物脱氮的缓释碳源材料性能研究[J]. 环境科学, 2008, 29(8): 2183-2188.
[5] 刘佳, 沈志强, 周岳溪, 等. 聚己内酯/淀粉共混物和砾石系统反硝化特性[J]. 环境科学研究, 2014, 27(4): 441-446.
[6] 蓝梅, 许志欣, 孙文叶, 等. 缓释碳源材料的选择与制备探究[J]. 工业水处理, 2017, 37(2): 24-28.
[7] XIONG R, YU X, YU L, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal wwtp[J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198
[8] 沈志强, 周岳溪, 王建龙, 等. 利用淀粉/PCL共混物作为反硝化固体碳源和生物膜载体的研究[J]. 环境工程技术学报, 2014, 4(2): 129-134.
[9] LI C, WANG H, YAN G, et al. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source[J]. Journal of Environmental Sciences, 2022, 118: 32-45. doi: 10.1016/j.jes.2021.08.045
[10] 王润众, 郝瑞霞, 赵文莉, 等. 新型缓释碳源的制备及其性能[J]. 环境工程学报, 2016, 10(1): 81-87.
[11] 程琳, 邹琴, 邹立扣, 等. 聚乙烯醇及改性聚乙烯醇/明胶多孔支架的体外生物相容性研究[J]. 成都大学学报, 2012, 31(2): 113-116.
[12] 唐丹琦, 王娟, 郑天龙, 等. 聚乳酸/淀粉固体缓释碳源生物反硝化研究[J]. 环境科学, 2014, 35(6): 2236-2240.
[13] 汪江波, 王浩, 孔博, 等. 黄酒酿造技术研究进展[J]. 酿酒, 2020, 47(6): 26-30.
[14] 谢广发, 彭祺, 毛青钟, 等. 《黄酒酿造技术》课程教学探索与实践研究[J]. 酿酒, 2020, 47(3): 28-30.
[15] 范恩帝, 蒋梦迎, 冯敏雪, 等. 混菌发酵白酒糟生产含功能成分饲料发酵条件的优化[J]. 生物技术通报, 2021, 37(12): 91-103.
[16] 柳珊, 郭春春, 何荣玉, 等. 酒糟厌氧消化产甲烷特性及微生物菌群结构分析[J]. 农业机械学报, 2023, 54: 1-21.
[17] 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(5): 2422-2431.
[18] RITGER P L, PEPPAS N A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices[J]. Journal of Controlled Release, 1987, 5(1): 37-42. doi: 10.1016/0168-3659(87)90035-6
[19] 范振兴, 赵璇, 王建龙, 等. 利用辐照预处理麦秆作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(4): 1090-1094.
[20] 周蜜. 新型多碳源缓释复合材料的制备及其强化低C/N污水脱氮性能的研究[D]. 重庆: 重庆大学, 2021.
[21] 国家环境环保总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
[22] 宋铁红, 赵凯, 佟娟, 等. 某实际染整废水深度处理过程中无机组分与溶解性有机物的变化[J]. 环境化学, 2022, 41(11): 3482-3492.
[23] 薛柯伲. 食品加工废水制备工业园区污水厂补充碳源研究[D]. 邯郸: 河北工程大学, 2022.
[24] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[25] XIONG R, YU X, ZHANG Y, et al. Comparison of agricultural wastes and synthetic macromolecules as solid carbon source in treating low carbon nitrogen wastewater[J]. Science of the Total Environment, 2020, 739: 139885. doi: 10.1016/j.scitotenv.2020.139885
[26] LIMA V D O, BARROS V G D, DUDA R M, et al. Anaerobic digestion of vinasse and water treatment plant sludge increases methane production and stability of uasb reactors[J]. Journal of Environmental Management, 2023, 327: 116451. doi: 10.1016/j.jenvman.2022.116451
[27] ZHANG D, LI G, YANG Y S, et al. Bio-geological processes of nitrogen transport and transformation in the aeration zone and aquifer[J]. Hydrological Sciences Journal, 2009, 54(2): 316-326. doi: 10.1623/hysj.54.2.316
[28] 邵兵, 张立秋, 李淑更, 等. 2种缓释碳源材料的释碳特性及脱氮性能研究[J]. 水处理技术, 2020, 46(12): 34-38.
[29] YU L, CHENG L, PENG Z, et al. Carbon release mechanism of synthetic and agricultural solid carbon sources[J]. Water and Environment Journal, 2020, 34(S1): 121-130. doi: 10.1111/wej.12511
[30] BRUSCHI M L. Strategies to modify the drug release from pharmaceutical systems[M]. Woodhead Publishing, 2015: 63-86.
[31] PEPPAS N A, NARASIMHAN B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems[J]. Journal of Controlled Release, 2014, 190: 75-81. doi: 10.1016/j.jconrel.2014.06.041
[32] KLECH C M, SIMONELLI, A P. Examination of the moving boundaries associated with non-fickian water swelling of glassy gelatin beads: Effect of solution pH[J]. Journal of Membrane Science, 1989, 43: 87-101. doi: 10.1016/S0376-7388(00)82355-8
[33] ATES N, KITIS M, YETIS U, et al. Formation of chlorination by-products in waters with low suva—correlations with suva and differential UV spectroscopy[J]. River Research and Applications, 2007, 41(18): 4139-4148.
[34] 周石磊, 孙悦, 张艺冉, 等. 雄安新区-白洋淀冬季冰封期水体溶解性有机物的空间分布、光谱特征及来源解析[J]. 环境科学, 2020, 41(1): 213-223.
[35] DUARTE R M B O, PIO C A, DUARTE A C, et al. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions[J]. Analytica Chimica Acta, 2005, 530(1): 7-14. doi: 10.1016/j.aca.2004.08.049
[36] PEBGHUI L, JIN H. Utilization of UV-vis spectroscopy and related data analyses for dissolved organic matter (dom) studies: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. doi: 10.1080/10643389.2017.1309186
[37] KUMKE M U, SPECHT C H, BRINKMANN T, et al. Alkaline hydrolysis of humic substances – spectroscopic and chromatographic investigations[J]. Chemosphere, 2001, 45(6): 1023-1031.
[38] CHEN Y, CHENG J J, CREAMER K S, et al. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057
[39] RAHA A R, WAN M F W N, RICCA R N, et al. Alginate and alginate composites for biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(3): 280-306. doi: 10.1016/j.ajps.2020.10.001
[40] ZHANG W, DENG Q, HE Q, et al. A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@pam with good adsorption capacity, high adaptability and stability towards cu(Ⅱ) removal[J]. Chemical Engineering Journal, 2018, 351: 462-472. doi: 10.1016/j.cej.2018.06.129
[41] HE X, XI B, WEI Z, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials, 2011, 190(1): 293-299.
[42] HU X, CHEN H, ZHANG S, et al. Study on performance of carbon source released from fruit shells and the effect on biological denitrification in the advanced treatment[J]. Chemosphere, 2022, 307: 136173. doi: 10.1016/j.chemosphere.2022.136173