[1] |
尹晓峰, 马艳玲, 金玉涛. 船舶废水处理技术综述[J]. 舰船科学技术, 2010, 32(12): 30-33.
|
[2] |
边婷婷, 李阳, 王储, 等. 船舶含油废水电化学氧化预处理研究[J]. 工业水处理, 2020, 40(10): 103-106.
|
[3] |
代洪亮, 古李娜, 赵芷晴, 等. 船舶油污水处理技术研究与应用进展[J]. 江苏科技大学学报(自然科学版), 2022, 36(3): 99-108.
|
[4] |
龚帆, 刘霞, 顾人吉. 一种组合工艺的船舶油污水处理技术[J]. 上海船舶运输科学研究所学报, 2019, 42(3): 80-84.
|
[5] |
YANG T, MA Z F, YANG Q Y. Formation and performance of Kaolin/MnO2 bi-layer composite dynamic membrane for oily wastewater treatment: Effect of solution conditions[J]. Desalination, 2011, 270(1): 50-56.
|
[6] |
ZHAO Y, TAN Y, WONG F S, et al. Formation of dynamic membranes for oily water separation by crossflow filtration[J]. Separation and Purification Technology, 2005, 44(3): 212-220. doi: 10.1016/j.seppur.2005.01.010
|
[7] |
YANG T, QIAO B, LI G C, et al. Improving performance of dynamic membrane assisted by electrocoagulation for treatment of oily wastewater: Effect of electrolytic conditions[J]. Desalination, 2015, 363: 134-143. doi: 10.1016/j.desal.2015.01.010
|
[8] |
SHAO S, LIU Y, SHI D, et al. Control of organic and surfactant fouling using dynamic membranes in the separation of oil-in-water emulsions[J]. Journal of Colloid and Interface Science, 2020, 560: 787-794. doi: 10.1016/j.jcis.2019.11.013
|
[9] |
ZHANG Y, ZHAO H. Formation of phosphorylated ZrxSi1−xO2/Al2O3 self-assembled membrane for cleaning oily seawater[J]. Journal of Membrane Science, 2017, 536: 28-36. doi: 10.1016/j.memsci.2017.04.061
|
[10] |
王文华, 赵瑾, 马宇辉, 等. 预涂动态膜强化超滤去除海水中有机物及其对膜污染的影响[J]. 环境科学学报, 2017, 37(4): 1349-1357.
|
[11] |
赵瑾, 王文华, 曹军瑞, 等. 预涂动态膜对超滤膜处理海水中有机物的影响[J]. 工业水处理, 2019, 39(3): 67-70. doi: 10.11894/1005-829x.2019.39(3).067
|
[12] |
WU S E, HWANG K J, CHENG T W, et al. Dynamic membranes of powder-activated carbon for removing microbes and organic matter from seawater[J]. Journal of Membrane Science, 2017, 541: 189-197. doi: 10.1016/j.memsci.2017.07.006
|
[13] |
ANANTHARAMAN A, CHUN Y, HUA T, et al. Pre-deposited dynamic membrane filtration – A review[J]. Water Research, 2020, 173: 115558. doi: 10.1016/j.watres.2020.115558
|
[14] |
ZHANG B, SHAN C, HAO Z, et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity[J]. Water Research, 2019, 157: 472-482. doi: 10.1016/j.watres.2019.04.002
|
[15] |
MENG F, HUANG G, YANG X, et al. Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers[J]. Water Research, 2013, 47(14): 5027-5039. doi: 10.1016/j.watres.2013.05.043
|
[16] |
WANG Y, LI N, FU Q, et al. Conversion and impact of dissolved organic matters in a heterogeneous catalytic peroxymonosulfate system for pollutant degradation[J]. Water Research, 2023, 241: 120166. doi: 10.1016/j.watres.2023.120166
|
[17] |
陈炜鸣, 辜哲培, 何晨, 等. 垃圾渗滤液浓缩液中溶解性有机物在热活化过硫酸盐体系的转化特性[J]. 环境科学学报, 2023, 43(8): 122-130.
|
[18] |
PHUNGSAI P, KURISU F, KASUGA I, et al. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry[J]. Water Research, 2016, 100: 526-536. doi: 10.1016/j.watres.2016.05.047
|
[19] |
胡权. 动态膜中试系统的集成及其成膜材料的制备与特性研究[D]. 广州: 广东工业大学, 2021.
|
[20] |
戴丽. 活性炭预涂动态膜处理船舶生活污水[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
[21] |
DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography-Methods, 2008, 6: 230-235. doi: 10.4319/lom.2008.6.230
|
[22] |
YANG Y, WANG P, SHI S, et al. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater[J]. Journal of Hazardous Materials, 2009, 168(1): 238-245. doi: 10.1016/j.jhazmat.2009.02.038
|
[23] |
魏朝成, 于彩虹, 徐磊. 粉末活性炭预沉积强化超滤膜处理微污染水的效应研究[J]. 矿业科学学报, 2020, 5(4): 458-466.
|
[24] |
李健. 活性炭投加对厌氧动态膜生物反应器的性能强化和机理研究[D]. 济南: 山东大学, 2020.
|
[25] |
王琳, 王宝贞, 王欣泽, 等. 活性炭与超滤组合工艺深度处理饮用水[J]. 中国给水排水, 2002(2): 1-4.
|
[26] |
WANG H, CHENG Z, SUN Z, et al. Molecular insight into variations of dissolved organic matters in leachates along China’s largest A/O-MBR-NF process to improve the removal efficiency[J]. Chemosphere, 2020, 243: 125354. doi: 10.1016/j.chemosphere.2019.125354
|
[27] |
田蕴, 郑天凌, 王新红. 厦门西港表层海水中多环芳烃(PAHs)的含量、组成及来源[J]. 环境科学学报, 2004(1): 50-55.
|
[28] |
GU Z, BAO M, HE C, et al. Transformation of dissolved organic matter in landfill leachate during a membrane bioreactor treatment[J]. Science of The Total Environment, 2023, 856: 159066. doi: 10.1016/j.scitotenv.2022.159066
|
[29] |
XIANG Y, WANG H, SU L, et al. Molecular transformation and composition flow of dissolved organic matter in four typical concentrated leachates from the multi-stage membrane system[J]. Journal of Environmental Management, 2022, 310: 114759. doi: 10.1016/j.jenvman.2022.114759
|
[30] |
YUAN Z, HE C, SHI Q, et al. Molecular insights into the transformation of dissolved organic matter in landfill leachate concentrate during biodegradation and coagulation processes using ESI FT-ICR MS[J]. Environmental Science & Technology, 2017, 51(14): 8110-8118.
|
[31] |
AL ZAROONI M, ELSHORBAGY W. Characterization and assessment of Al Ruwais refinery wastewater[J]. Journal of Hazardous Materials, 2006, 136(3): 398-405. doi: 10.1016/j.jhazmat.2005.09.060
|
[32] |
LIN J, LIAO Q, HU Y, et al. Effects of process parameters on sulfur migration and H2S generation during supercritical water gasification of sludge[J]. Journal of Hazardous Materials, 2021, 403: 123678. doi: 10.1016/j.jhazmat.2020.123678
|
[33] |
郭送军, 韦进毅, 王晨路, 等. 基于FT-ICR MS的蒸汽爆破预处理强化污泥厌氧消化的有机物分子解析[J]. 环境工程学报, 2023, 17(4): 1337-1345.
|
[34] |
BAHUREKSA W, TFAILY M M, BOITEAU R M, et al. Soil organic matter characterization by fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): A critical review of sample preparation, analysis, and data interpretation[J]. Environmental Science & Technology, 2021, 55(14): 9637-9656.
|
[35] |
WU S, YOU F, BOUGHTON B, et al. Chemodiversity of dissolved organic matter and its molecular changes driven by rhizosphere activities in Fe ore tailings undergoing eco-engineered pedogenesis[J]. Environmental Science & Technology, 2021, 55(19): 13045-13060.
|
[36] |
李利杰. 天然水体可溶有机质分子组成与分子结构分析方法与应用[D]. 北京: 中国石油大学(北京), 2019.
|
[37] |
CORTÉS-FRANCISCO N, CAIXACH J. Fragmentation studies for the structural characterization of marine dissolved organic matter[J]. Analytical and Bioanalytical Chemistry, 2015, 407(9): 2455-2462. doi: 10.1007/s00216-015-8499-3
|
[38] |
LIU Z F, SLEIGHTER R L, ZHONG J Y, et al. The chemical changes of DOM from black waters to coastal marine waters by HPLC combined with ultrahigh resolution mass spectrometry[J]. Estuarine Coastal and Shelf Science, 2011, 92(2): 205-216. doi: 10.1016/j.ecss.2010.12.030
|
[39] |
SHAKERI YEKTA S, GONSIOR M, SCHMITT-KOPPLIN P, et al. Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: A qualitative overview[J]. Environmental Science & Technology, 2012, 46(22): 12711-12719.
|
[40] |
VARANASI L, COSCARELLI E, KHAKSARI M, et al. Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-based advanced oxidation processes[J]. Water Research, 2018, 135: 22-30. doi: 10.1016/j.watres.2018.02.015
|