[1] |
DAI G, WANG B, HUANG J, DONG R, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China[J]. Chemosphere, 2015, 119: 1033-1039. doi: 10.1016/j.chemosphere.2014.08.056
|
[2] |
IKEHATA K, El-Din M G. Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: A review[J]. Journal of Environmental Engineering and Science, 2006, 5(2): 81-135. doi: 10.1139/s05-046
|
[3] |
BOXALL A B A, RUDD M A, BROOKS B W, et al. Pharmaceuticals and personal care products in the environment: What are the big questions?[J]. Environmental health perspectives, 2012, 120(9): 1221-1229. doi: 10.1289/ehp.1104477
|
[4] |
孙绪敏, 刘建广. 紫外高级氧化工艺控制消毒副产物生成研究进展[J]. 净水技术, 2022, 41(11): 7-15.
|
[5] |
RAMOS L F, DA SILVA S W, SCHNEIDER D E, et al. Mineralization of erythromycin by UV-based and electro-oxidation processes[J]. Journal of Water Process Engineering, 2020, 33: 101039. doi: 10.1016/j.jwpe.2019.101039
|
[6] |
YAñEZ-RIOS A E, CARRERA-CRESPO J E, LUNA-SANCHEZ R M, et al. The influence of pH and current density on an UV254 photo-assisted electrochemical process generating active chlorine and radicals for efficient and rapid ciprofloxacin mineralization compared to individual techniques[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104357. doi: 10.1016/j.jece.2020.104357
|
[7] |
YIN H, ZHANG Q, SU Y, et al. A novel UV based advanced oxidation process with electrochemical co-generation of chlorine and H2O2 for carbamazepine abatement: better performance, lower energy consumption and less DBPs formation[J]. Chemical Engineering Journal, 2021, 425: 131857. doi: 10.1016/j.cej.2021.131857
|
[8] |
宋强, 曲久辉. 光电协同新技术降解饮用水中微量邻氯酚[J]. 科学通报, 2003, 48(3): 233-238.
|
[9] |
LI C, WANG Y, WANG Y, et al. Electrochemical oxidation combined with UV irradiation for synergistic removal of perfluorooctane sulfonate (PFOS) in water[J]. Journal of Hazardous Materials, 2022, 436: 129091. doi: 10.1016/j.jhazmat.2022.129091
|
[10] |
ZHANG Y, WANG H, LI Y, et al. Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment[J]. Water Research, 2020, 183: 116115. doi: 10.1016/j.watres.2020.116115
|
[11] |
YU F, ZHOU M, YU X. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration[J]. Electrochimica Acta, 2015, 163: 182-189. doi: 10.1016/j.electacta.2015.02.166
|
[12] |
ZHANG W, GHALI E, HOULACHI G. Review of oxide coated catalytic titanium anodes performance for metal electrowinning[J]. Hydrometallurgy, 2017, 169: 456-467. doi: 10.1016/j.hydromet.2017.02.014
|
[13] |
XU A, DAI X, WEI K, et al. Preparation and characterization of a TiO2-NT/SnO2-Sb tubular porous electrode with long service lifetime for wastewater treatment process[J]. RSC Advances, 2017, 7(60): 37806-37814. doi: 10.1039/C7RA05127A
|
[14] |
WANG W, DUAN X, SUI X, et al. Surface characterization and electrochemical properties of PbO2/SnO2 composite anodes for electrocatalytic oxidation of m-nitrophenol[J]. Electrochimica Acta, 2020, 335: 135649. doi: 10.1016/j.electacta.2020.135649
|
[15] |
HUANG X, WANG S, WANG G, et al. Kinetic and mechanistic investigation of geosmin and 2-methylisoborneol degradation using UV-assisted photoelectrochemical[J]. Chemosphere, 2022, 290: 133325. doi: 10.1016/j.chemosphere.2021.133325
|
[16] |
GONZAGA I M D, MORATALLA A, EGUILUZ K I B, et al. Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis[J]. Chemical Engineering Journal, 2021, 420: 129999. doi: 10.1016/j.cej.2021.129999
|
[17] |
ZHANG Y, ZHAN J, WANG B, et al. Integration of ultraviolet irradiation with electrochemical chlorine and hydrogen peroxide production for micropollutant abatement[J]. Chemical Engineering Journal, 2022, 430: 132804. doi: 10.1016/j.cej.2021.132804
|
[18] |
GUO K H, WU Z H, YAN S W, et al. Comparison of the UV/ chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements[J]. Water Research, 2018, 147: 184-194. doi: 10.1016/j.watres.2018.08.048
|
[19] |
杨晓婷, 邱海燕, 谯梦丹等. Fenton氧化法与电絮凝法对水中盐酸四环素的去除[J]. 净水技术, 2022, 41(3): 90-99.
|
[20] |
郑雪. Fenton及电-Fenton降解盐酸四环素生产废水的研究[D]. 成都: 西南交通大学, 2021.
|
[21] |
贾伟建, 朱化雨, 王德生, 等. BDD阳极去除水中阿特拉津的特性及机理研究[J]. 工业水处理, 2022, 42(6): 174-179.
|
[22] |
YU H, SUN X, ZHAO B, et al. Enhanced photoelectrocatalytic degradation of tetracycline using a bifacial electrode of nickel-polyethylene glycol-PbO2//Ti//TiO2-Ag2O[J]. Journal of Electroanalytical Chemistry, 2021, 893: 115319. doi: 10.1016/j.jelechem.2021.115319
|
[23] |
邓南圣, 吴峰. 环境光化学[M]. 北京: 化学工业出版社 2003.
|
[24] |
陈宋义, 孙汝. 紫外灯辐射强度与电压, 温度及距离的关系[J]. 上海预防医学, 1999, 11(7): 309-311.
|
[25] |
李富华, 陈敏, 孔青青, 等. 水中几种无机离子对布洛芬光降解的影响[J]. 工业安全与环保, 2016, 42(10): 8-10.
|
[26] |
FU Y, GAO X, GENG J, et al. Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: degradation mechanisms, efficiency in effluents disposal[J]. Chemical Engineering Journal, 2019, 356: 1032-1041. doi: 10.1016/j.cej.2018.08.013
|
[27] |
YANG X, SUN J, FU W, et al. PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters[J]. Water Research, 2016, 98: 309-318. doi: 10.1016/j.watres.2016.04.011
|
[28] |
SRUTHI L, JANANI B, KHAN S S. Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: A review[J]. Separation and Purification Technology, 2021, 279: 119709. doi: 10.1016/j.seppur.2021.119709
|
[29] |
CAI Z, HAO X, SUN X, et al. Highly active WO3@ anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: Mechanism insight and toxicity assessment[J]. Water Research, 2019, 162: 369-382. doi: 10.1016/j.watres.2019.06.017
|