[1] CALDERÓN-GARCIDUEÑAS L, MORA-TISCAREÑO A, ONTIVEROS E, et al. Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs[J]. Brain and Cognition, 2008, 68(2): 117-127. doi: 10.1016/j.bandc.2008.04.008
[2] CALDERÓN-GARCIDUEÑAS L, ENGLE R, MORA-TISCAREÑO A, et al. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children[J]. Brain and Cognition, 2011, 77(3): 345-355. doi: 10.1016/j.bandc.2011.09.006
[3] JØRGENSEN J T, JOHANSEN M S, RAVNSKJÆR L, et al. Long-term exposure to ambient air pollution and incidence of brain tumours: The Danish Nurse Cohort[J]. NeuroToxicology, 2016, 55: 122-130. doi: 10.1016/j.neuro.2016.06.003
[4] CACCIOTTOLO M, WANG X, DRISCOLL I, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models[J]. Translational Psychiatry, 2017, 7(1): e1022. doi: 10.1038/tp.2016.280
[5] CHANG Y C, COLE T B, COSTA L G. Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice[J]. Particle and Fibre Toxicology, 2018, 15(1): 1-14. doi: 10.1186/s12989-017-0237-x
[6] CALDERÓN-GARCIDUEÑAS L, STOMMEL E W, RAJKUMAR R P, et al. Particulate air pollution and risk of neuropsychiatric outcomes. what we breathe, swallow, and put on our skin matters[J]. International Journal of Environmental Research and Public Health, 2021, 18(21): 11568. doi: 10.3390/ijerph182111568
[7] CALDERÓN-GARCIDUEÑAS L, FRANCO-LIRA M, MORA-TISCAREÑO A, et al. Early Alzheimer’s and Parkinson’s disease pathology in urban children: Friend versus foe responses—It is time to face the evidence[J]. BioMed Research International, 2013, 2013: 1-16.
[8] GREEN E H, KIKIS E A. Determining the effects of nanoparticulate air pollution on proteostasis in Caenorhabditis elegans[J]. PLoS One, 2020, 15(12): e0243419. doi: 10.1371/journal.pone.0243419
[9] WANG X X, SONG Y Y, HU D D, et al. Metabolic and lipid alterations in mice brain cortex after PM2.5 exposure[J]. Chemical Research in Toxicology, 2021, 34(5): 1250-1255. doi: 10.1021/acs.chemrestox.1c00015
[10] QIN S J, ZENG H X, WU Q Z, et al. An integrative analysis of lipidomics and transcriptomics in various mouse brain regions in response to real-ambient PM2.5 exposure[J]. The Science of the Total Environment, 2023, 895: 165112. doi: 10.1016/j.scitotenv.2023.165112
[11] WANG J, MA T F, MA D, et al. The impact of air pollution on neurodegenerative diseases[J]. Therapeutic Drug Monitoring, 2021, 43(1): 69-78. doi: 10.1097/FTD.0000000000000818
[12] SOLAIMANI P, SAFFARI A, SIOUTAS C, et al. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons[J]. NeuroToxicology, 2017, 58: 50-57. doi: 10.1016/j.neuro.2016.11.001
[13] BILINOVICH S M, LEWIS K, THOMPSON B L, et al. Environmental epigenetics of diesel particulate matter toxicogenomics[J]. International Journal of Environmental Research and Public Health, 2020, 17(20): 7386. doi: 10.3390/ijerph17207386
[14] LI Z, YAN H, ZHANG X, et al. Air pollution interacts with genetic risk to influence cortical networks implicated in depression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(46): e2109310118.
[15] PARK J H, CHOI J Y, LEE H K, et al. Notch1-mediated inflammation is associated with endothelial dysfunction in human brain microvascular endothelial cells upon particulate matter exposure[J]. Archives of Toxicology, 2021, 95(2): 529-540. doi: 10.1007/s00204-020-02942-9
[16] SUWANNASUAL U, LUCERO J, McDONALD J D, et al. Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet[J]. Environmental Research, 2018, 160: 449-461. doi: 10.1016/j.envres.2017.10.029
[17] HAHAD O, LELIEVELD J, BIRKLEIN F, et al. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress[J]. International Journal of Molecular Sciences, 2020, 21(12): 4306. doi: 10.3390/ijms21124306
[18] MAHER B A, AHMED I A M, KARLOUKOVSKI V, et al. Magnetite pollution nanoparticles in the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10797-10801.
[19] QI Y, WEI S T, XIN T, et al. Passage of exogeneous fine particles from the lung into the brain in humans and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2117083119.
[20] OBERDÖRSTER G, SHARP Z, ATUDOREI V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats[J]. Journal of Toxicology and Environmental Health, Part A, 2002, 65(20): 1531-1543. doi: 10.1080/00984100290071658
[21] OBERDÖRSTER G, SHARP Z, ATUDOREI V, et al. Translocation of inhaled ultrafine particles to the brain[J]. Inhalation Toxicology, 2004, 16(6/7): 437-445.
[22] ELDER A, GELEIN R, SILVA V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system[J]. Environmental Health Perspectives, 2006, 114(8): 1172-1178. doi: 10.1289/ehp.9030
[23] KOFFIE R M, FARRAR C T, SAIDI L J, et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(46): 18837-18842.
[24] TOPAL G R, MÉSZÁROS M, PORKOLÁB G, et al. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood-brain barrier[J]. Pharmaceutics, 2020, 13(1): 38. doi: 10.3390/pharmaceutics13010038
[25] UNDERWOOD E. The polluted brain[J]. Science, 2017, 355(6323): 342-345. doi: 10.1126/science.355.6323.342
[26] PEEPLES L. How air pollution threatens brain health[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 13856-13860.
[27] WANG W C, LIN Y, YANG H, et al. Internal exposure and distribution of airborne fine particles in the human body: Methodology, current understandings, and research needs[J]. Environmental Science & Technology, 2022, 56(11): 6857-6869.
[28] MIN K, HAO S Y, LIN Y E, et al. An attempt to detect ambient black carbon in the human brain using mass spectrometry imaging[J]. Environmental Science & Technology Letters, 2023, 6: 00664.
[29] WEI W, YANG B W, ZHU X Y, et al. Silica nanoparticle exposure caused brain lesion and underlying toxicological mechanism: Route-dependent bio-Corona formation and GSK3β phosphorylation status[J]. Environment & Health, 2023.
[30] XU M A, NIU Z S, LIU C, et al. Oxidative potential of metal-containing nanoparticles in coal fly ash generated from coal-fired power plants in China[J]. Environment & Health, 2023, 1(3): 180-190.
[31] GUO Z L, ZHANG P, CHAKRABORTY S, et al. Biotransformation modulates the penetration of metallic nanomaterials across an artificial blood–brain barrier model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(28): e2105245118.
[32] LIN Y, WATSON K A, FALLBACH M J, et al. Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes[J]. ACS Nano, 2009, 3(4): 871-884. doi: 10.1021/nn8009097
[33] YANG K, WAN J M, ZHANG S A, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice[J]. ACS Nano, 2011, 5(1): 516-522. doi: 10.1021/nn1024303
[34] JIANG Y M, SUN J, XIONG C Q, et al. Mass spectrometry imaging reveals in situ behaviors of multiple components in aerosol particles[J]. Angewandte Chemie , 2021, 60(43): 23225-23231. doi: 10.1002/anie.202103874
[35] CAO M J, CAI R, ZHAO L N, et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo[J]. Nature Nanotechnology, 2021, 16(6): 708-716. doi: 10.1038/s41565-021-00856-w