[1] 陈玉玉, 张光全, 张杨, 等. 甘肃省农业土壤邻苯二甲酸酯累积特征及来源分析[J]. 环境科学, 2022, 43(10): 4622-4629. doi: 10.13227/j.hjkx.202111310
[2] LÜ H X, MO C H, ZHAO H M, et al. Soil contamination and sources of phthalates and its health risk in China: a review[J]. Environmental Research, 2018, 164: 417-429. doi: 10.1016/j.envres.2018.03.013
[3] REN W J, WANG Y T, HUANG Y W, et al. Uptake, translocation and metabolism of di-n-butyl phthalate in alfalfa ( Medicago sativa)[J]. Science of the Total Environment, 2020, 731: 138974. doi: 10.1016/j.scitotenv.2020.138974
[4] SUN J, WU X, GAN J. Uptake and metabolism of phthalate esters by edible plants[J]. Environmental Science & Technology, 2015, 49: 8471-8478.
[5] CAI Q Y, XIAO P Y, ZHAO H M, et al. Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice ( Oryza sativa L. ) genotypes and selection of cultivars for low DBP exposure[J]. Environmental Science and Pollution Research, 2017, 24: 7298-7309. doi: 10.1007/s11356-017-8365-2
[6] XIANG L, CHEN L, YU L Y, et al. Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in Lettuce ( Lactuca Sativa L. ) cultivars grown in PFOA-polluted soils[J]. Science of the Total Environment, 2018, 636: 999-1008. doi: 10.1016/j.scitotenv.2018.04.354
[7] YU P F, XIANG L, LI X H, et al. Cultivar-dependent accumulation and translocation of perfluorooctanesulfonate among lettuce ( Lactuca Sativa L. ) cultivars grown on perfluorooctanesulfonate-contaminated soil[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50): 13096-13106. doi: 10.1021/acs.jafc.8b04548
[8] GAO Y, REN L, LING W, et al. Desorption of phenanthrene and pyrene in soils by root exudates[J]. Bioresource Technology, 2010, 101: 1159-1165. doi: 10.1016/j.biortech.2009.09.062
[9] RODRÍGUEZ-GARRIDO B, BALSEIRO-ROMERO M, KIDD P S, et al. Effect of plant root exudates on the desorption of hexachlorocyclohexane isomers from contaminated soils[J]. Chemosphere, 2020, 241: 124920. doi: 10.1016/j.chemosphere.2019.124920
[10] PEÑA A. A comprehensive review of recent research concerning the role of low molecular weight organic acids on the fate of organic pollutants in soil[J]. Journal of Hazardous Materials, 2022, 434: 128875. doi: 10.1016/j.jhazmat.2022.128875
[11] MUSTAFA A E Z M A, ALKAHTANI J, ELSHIKH M S, et al. Enhanced uptake of di-(2-ethylhexyl) phthalate by the influence of citric acid in Helianthus annuus cultivated in artificially contaminated soil[J]. Chemosphere, 2021, 264: 128485. doi: 10.1016/j.chemosphere.2020.128485
[12] HOU Y, LIU X, ZHANG X, et al. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils[J]. Environmental Science and Pollution Research, 2015, 22: 17780-17788. doi: 10.1007/s11356-015-4995-4
[13] LING W, REN L, GAO Y, et al. Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil[J]. Soil Biology and Biochemistry, 2009, 41(10): 2187-2195. doi: 10.1016/j.soilbio.2009.08.003
[14] LUO L, ZHANG S, SHAN X Q, et al. Oxalate and root exudates enhance the desorption of p, p”-DDT from soils[J]. Chemosphere, 2006, 63: 1273-1279. doi: 10.1016/j.chemosphere.2005.10.013
[15] XIANG L, CHEN X T, YU P F, et al. Oxalic acid in root exudates enhances accumulation of perfluorooctanoic acid in lettuce[J]. Environmental Science & Technology, 2020, 54: 13046-13055.
[16] YUAN L, WU Y, FAN Q, et al. Influence mechanism of organic matter and low-molecular-weight organic acids on the interaction between minerals and PAHs[J]. Science of the Total Environment, 2023, 862: 160872. doi: 10.1016/j.scitotenv.2022.160872
[17] GAO Y, HU X, ZHOU Z, et al. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils[J]. Environmental Pollution, 2017, 222: 465-476. doi: 10.1016/j.envpol.2016.11.076
[18] GAO Y, YUAN X, LIN X, et al. Low-molecular-weight organic acids enhance the release of bound PAH residues in soils[J]. Soil and Tillage Research, 2015, 145: 103-110. doi: 10.1016/j.still.2014.09.008
[19] DU P P, HUANG Y H, LÜ H X, et al. Rice root exudates enhance desorption and bioavailability of phthalic acid esters (PAEs) in soil associating with cultivar variation in PAE accumulation[J]. Environmental Research, 2020, 186: 109611. doi: 10.1016/j.envres.2020.109611
[20] 曾巧云, 莫测辉, 蔡全英, 等. 邻苯二甲酸二丁酯在不同品种菜心-土壤系统的累积[J]. 中国环境科学, 2006, 26(3): 333-336. doi: 10.3321/j.issn:1000-6923.2006.03.018
[21] 曾巧云, 卫泽斌, 龙新宪. 环境土壤学实验教程[M]. 1版. 北京: 中国农大出版社, 2022: 221-224.
[22] 广州市质量技术监督局. 广州市地方技术规范水质半挥发性有机污染物(SVOCs)的测定——液液萃取-气相色谱/质谱分析法DBJ 440100/T 75-2010 [S]. 广州: 广州市环境保护局.
[23] LIN Y L, WANG L, LI R, et al. How do root exudates of bok choy promote dibutyl phthalate adsorption on mollisol?[J]. Ecotoxicology and Environmental Safety, 2018, 161: 129-136. doi: 10.1016/j.ecoenv.2018.05.072
[24] MONTIEL-ROZAS M M, MADEJÓN E, MADEJÓN P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination[J]. Environmental Pollution, 2016, 216: 273-281. doi: 10.1016/j.envpol.2016.05.080
[25] LAPIE C, STERCKEMAN T, PARIS C, et al. Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage[J]. Environmental Science and Pollution Research, 2020, 27(3): 3124-3142. doi: 10.1007/s11356-019-07298-x
[26] WANG Y, REN W, LI Y, et al. Nontargeted metabolomic analysis to unravel the impact of di(2-ethylhexyl) phthalate stress on root exudates of alfalfa ( Medicago sativa)[J]. Science of the Total Environment, 2019, 646: 212-219. doi: 10.1016/j.scitotenv.2018.07.247
[27] WANG J, FAROOQ T H, ASLAM A, et al. Non-targeted metabolomics reveal the impact of phenanthrene stress on root exudates of ten urban greening tree species[J]. Environmental Research, 2021, 196: 110370. doi: 10.1016/j.envres.2020.110370
[28] LIU B, WU L, PAN P, et al. Response of root exudates of Bruguiera gymnorrhiza (L. ) to exposure of polycyclic aromatic hydrocarbons[J]. Frontiers in Environmental Science, 2022, 9: 787002. doi: 10.3389/fenvs.2021.787002
[29] JIA H, LU H L, LIU J C, et al. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments[J]. Environmental Science and Pollution Research, 2016, 23: 5566-5576. doi: 10.1007/s11356-015-5772-0