[1] LI C X, LI M, ZENG J Q, et al. Migration and distribution characteristics of soil heavy metal (loid) s at a lead smelting site[J]. Journal of Environmental Sciences, 2024, 135: 600-609. doi: 10.1016/j.jes.2023.02.007
[2] 张施阳. 钢铁厂遗留场地土壤重金属和多环芳烃的污染特征及健康风险评价[J]. 环境污染与防治, 2022, 44(10): 1336-1342.
[3] CAO S Z, DUAN X L, ZHAO X G, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J]. Science of the Total Environment, 2014, 472: 1001-1009. doi: 10.1016/j.scitotenv.2013.11.124
[4] 贾晓洋, 姜林, 夏天翔, 等. 焦化厂土壤中PAHs的累积、垂向分布特征及来源分析[J]. 化工学报, 2011, 62(12): 3525-3531.
[5] CHRISTIAN G, AGNES O, ERIC W, et al. Bioaccessibility of PAH from Danish soils[J]. Journal of Environmental Science and Health Part A, 2007, 42(9): 1233-1239. doi: 10.1080/10934520701435619
[6] 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境科学出版社, 2019.
[7] Alexander M. Aging, bioavailability, and overestimationof risk from environmental pollutants[J]. Environmental Science& Technology, 2000, 34(20): 4259-4265.
[8] EOM I C, RAST C, VEBER A M, et al. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH) contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67(2): 190-205. doi: 10.1016/j.ecoenv.2006.12.020
[9] 陈卓, 张丹, 吴志远, 等. 基于形态及生物可给性的汞污染场地概率风险[J]. 环境科学研究, 2021, 34(11): 2748-2756.
[10] 姜林, 钟茂生, 张丹, 等. 污染场地土壤多环芳烃 (PAHs) 生物可利用浓度的健康风险评价方法[J]. 生态环境学报, 2011, 20(Z1): 1168-1175.
[11] 中华人民共和国生态环境部. 建设用地土壤污染修复目标值制定指南 (试行) [EB/OL]. [2022-12-28]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/W020221228543185584361.pdf, 2022.
[12] 李慧, 韩雅静, 朱晓辉, 等. 基于生物可给性的农用地土壤重金属复合污染非致癌健康风险评估[J]. 环境科学研究, 2023, 36(4): 783-793.
[13] 李小娟, 徐佳燕, 张剑宇, 等. 利用in vitro试验的城市土壤重金属健康风险研究及其对中国土壤污染调查的启示[J]. 天津大学学报 (自然科学与工程技术版) , 2020, 53(10): 1001-1012.
[14] 陈晓晨, 韩泽亮, 张剑宇, 等. 中国典型土壤中铅的生物可给性的影响因素分析与健康风险评估[J]. 生态环境学报, 2021, 30(1): 165-172.
[15] LU M J, LI G Y, YANG Y, et al. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment[J]. Science of the Total Environment, 2021, 752: 142001. doi: 10.1016/j.scitotenv.2020.142001
[16] YU L B, DUAN L C, NAIDU R, et al. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture[J]. Science of the Total Environment, 2018, 613-614: 1140-1153. doi: 10.1016/j.scitotenv.2017.09.025
[17] GIROUARD E, ZAGURY G J. Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic frac-tionation, and particle-size fraction[J]. Science of the Total Environment, 2009, 407(8): 2576-2585. doi: 10.1016/j.scitotenv.2008.12.019
[18] 范婧婧. 基于生物可给性的场地重金属及半挥发有机污染物健康风险评估研究[D]. 河北师范大学, 2020: 36-37.
[19] 黄淑婷, 肖荣波, 黄飞, 等. 土壤不同粒级中Cr (Ⅵ) 生物可给性及健康风险[J]. 生态毒理学报, 2023, 18(1): 405-414.
[20] 李继宁, 侯红, 魏源, 等. 株洲市农田土壤重金属生物可给性及其人体健康风险评估[J]. 环境科学研究, 2013, 26(10): 1139-1146.
[21] 武慧君, 方凤满, 武家园, 等. 煤矿型城市小学校园表层土壤重金属生物可给性与健康风险研究[J]. 土壤通报, 2017, 48(5): 1247-1255.
[22] XIE K, XIE N, LIAO Z, et al. Bioaccessibility of arsenic, lead, and cadmium in contaminated mining/smelting soils: Assessment, modeling, and application for soil environment criteria derivation[J]. Journal of Hazardous Materials, 2023, 443 (Pt B) : 130321.
[23] 张加文, 田彪, 罗晶晶, 等. 土壤重金属生物可利用性影响因素及模型预测[J]. 环境科学, 2022, 43(7): 3811-3824.
[24] LUO X S, YU S, LI X D. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong[J]. Applied Geochemistry, 2012, 27(5): 995-1004. doi: 10.1016/j.apgeochem.2011.07.001
[25] 高晓红, 李兴奇. 多元线性回归模型中无量纲化方法比较[J]. 统计与决策, 2022, 38(6): 5-9.
[26] BETHANY M, ARKO L, JAGANNATH A. Object-based random forest classification of Landsat ETM+and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 66: 46-55. doi: 10.1016/j.jag.2017.11.006
[27] HUANG B Y, LU Q X, TANG Z X, et al. Machine learning methods to predict cadmium (Cd) concentration in rice grainand support soil management at a regional scale[J/OL]. Fundamental Research[2023-3-10].https: //www.sciencedirect.com/science/article/pii/S2667325823000663.
[28] YANG H R, HUANG K, ZHANG K, et al. Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities[J]. Environmental Science & Technology, 2021, 55(20): 14316-14328.
[29] 生态环境部. 全国建设用地土壤环境管理信息系统[EB/OL]. http: //114.251.10.109/page/shareuserlogin.html.
[30] 张逸飞, 曹佳. 土壤属性数据pH缺失的插补方法[J]. 计算机系统应用, 2021, 30(1): 277-281.
[31] MENG Y, YANG N H, QIAN Z L, et al. What makes an online review more helpful: An interpretation framework using XGBoost and SHAP values[J]. Theoretical Applied Electronic Commerce, 2021, 16: 466-490.
[32] LI S W, LI J, LI H B, et al. Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction[J]. Journal of Hazardous Materials, 2015, 295: 145-152. doi: 10.1016/j.jhazmat.2015.04.011
[33] LU Y, YIN W, HUANG L, et al. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China[J]. Environmental Geochemistry and Health, 2011, 33: 93-102. doi: 10.1007/s10653-010-9324-8
[34] 张玉, 熊杰, 唐翠梅, 等. 某污染场地土壤重金属生物可给性及其对修复目标的影响研究[J]. 中国氯碱, 2019(6): 41-47.
[35] ZHU X, LI M Y, CHEN X Q, et al. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay[J]. Environment International, 2019, 130: 104875. doi: 10.1016/j.envint.2019.05.069
[36] XIAO W W, LIN G B, HE X M, et al. Interactions among heavy metal bioaccessibility, soil properties and microbial community in phyto-remediated soils nearby an abandoned realgar mine[J]. Chemosphere, 2022, 286: 131638. doi: 10.1016/j.chemosphere.2021.131638
[37] LIAO Q, HE L X, TU G Y, et al. Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate- and phosphate-based bio-nanocomposite: Effectiveness, longterm stability and bioavailablity/bioaccessibility evaluation[J]. Chemosphere, 2021, 266: 128960. doi: 10.1016/j.chemosphere.2020.128960
[38] 冯康宏, 范缙, Lik Ung Stanley Hii, 等. 基于生物可给性的某冶炼厂土壤重金属健康风险评价[J]. 中国环境科学, 2021, 41(1): 442-450.
[39] 陈奕. 基于生物可给性分析工业场地土壤重金属污染的人体健康风险[J]. 生态毒理学报, 2020, 15(5): 319-326.
[40] 郭晓欣, 范婧婧, 周友亚, 等. 焦化场地典型多环芳烃类污染物精细化风险评估[J]. 生态毒理学报, 2021, 16(1): 155-164.
[41] 范婧婧, 周友亚, 王淑萍, 等. 基于DIN测试的场地土壤PAHs生物可给性及健康风险研究[J]. 环境科学研究, 2020, 33(11): 2629-2638.
[42] 钟茂生, 彭超, 姜林, 等. 老化土壤中As的人体可给性控制因素及健康风险[J]. 环境科学研究, 2015, 28(2): 267-274.
[43] ELBANA T A, SELIM H M, AKRAMI N, et al. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics[J]. Geoderma, 2018, 324: 80-88. doi: 10.1016/j.geoderma.2018.03.019
[44] CUI Y S, CHEN X C. Lead (Pb) and arsenic (As) bioaccessibility in various soils from South China[J]. Environmental Monitoring and Assessment, 2011, 177(1/2/3/4): 481-492.
[45] PORTET-KOLTALO F, GARDES T, DEBRET M, et al. Bioaccessibility of polycyclic aromatic compounds (PAHs, PCBs) and trace elements: Influencing factors and determination in a river sediment core[J]. Journal of Hazardous Materials, 2020, 384: 121499. doi: 10.1016/j.jhazmat.2019.121499
[46] CRAMPON M, BODILIS J, LE DERF F, et al. Alternative techniques to HPCD to evaluate the bioaccessible fraction of soil-associated PAHs and correlation to biodegradation efficiency[J]. Journal of Hazardous Materials, 2016, 314: 220-229. doi: 10.1016/j.jhazmat.2016.04.059
[47] CELIS R, DE JONGE H, DE JONGE LW, et al. The role of mineral and organic components in phenanthrene and dibenzofuran sorption by soil[J]. European Journal of Soil Science, 2006, 57: 308-19. doi: 10.1111/j.1365-2389.2005.00740.x
[48] GU J J, YANG B, BRAUER M, et al. Enhancing the evaluation and interpretability of data-driven air quality models[J]. Atmospheric Environment, 2021, 246: 118125. doi: 10.1016/j.atmosenv.2020.118125