[1] CHEN J, GUAN B, LIU Z, et al. Review on advances in structure–activity relationship, reaction & deactivation mechanism and rational improving design of selective catalytic reduction deNOx catalysts: Challenges and opportunities[J]. Fuel, 2023, 343: 127924. doi: 10.1016/j.fuel.2023.127924
[2] YAO X, ZHANG M, KONG H, et al. Investigation and control technology on excessive ammonia-slipping in coal-fired plants[J]. Energies, 2020, 13(16): 4249. doi: 10.3390/en13164249
[3] 武洁, 张志勇, 刘显丽. 燃煤电厂机组负荷变化与SCR系统参数的相关性分析[J]. 环境工程, 2021, 39(8): 131-135. doi: 10.13205/j.hjgc.202108018
[4] LI Z, LEE Y S, CHEN J, et al. Developing variable moving window PLS models: Using case of NO x emission prediction of coal-fired power plants[J]. Fuel, 2021, 296: 120441. doi: 10.1016/j.fuel.2021.120441
[5] YIN J, LIU M, WU Q, et al. Optimized fluegas denitrification control strategy to enhance SCR performance during load-cycling transient processes in coal-fired power plants[J]. Fuel, 2023, 344: 127837. doi: 10.1016/j.fuel.2023.127837
[6] 冯前伟, 张杨, 王丰吉, 等. 燃煤机组SCR脱硝超低排放改造前后性能对比分析[J]. 中国电机工程学报, 2020, 40(20): 6644-6653.
[7] 凌忠钱, 曾宪阳, 胡善涛, 等. 电站锅炉SCR烟气脱硝系统优化数值模拟[J]. 动力工程学报, 2014, 34(1): 50-56.
[8] ZHENG C, LI X, LI J, et al. Investigation on the ammonia emission characteristics in coal-fired power plants of China[J]. Fuel, 2022, 314: 123046. doi: 10.1016/j.fuel.2021.123046
[9] HU B, CHEN C, JIANG S, et al. Investigating the optimization design of internal flow fields using a selective catalytic reduction device and computational fluid dynamics[J]. Energies, 2022, 15(4): 1451. doi: 10.3390/en15041451
[10] 邹红果, 啜广毅, 张丽丽, 等. CFD模拟对SCR系统流场及性能的优化[J]. 环境工程, 2019, 37(12): 149-152.
[11] ZHENG C, XIAO L, QU R, et al. Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874-884. doi: 10.1016/j.cej.2018.12.150
[12] LEI Z, LIU X, JIA M. Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalyst[J]. Energy & Fuels, 2009, 23(12): 6146-6151.
[13] 赵大周, 何胜, 司风琪, 等. 选择性催化还原单孔催化剂数值模拟[J]. 热力发电, 2016, 45(4): 100-105.
[14] 杜云贵, 吴其荣, 邓佳佳, 等. SCR烟气脱硝催化剂的化学动力学模拟研究[J]. 热力发电, 2010, 39(2): 52-55.
[15] 李晗天, 宋蔷, 姚强. SCR反应器入口速度与氨分布不均匀性对脱硝性能的影响[J]. 中国电机工程学报, 2017, 37(9): 2599-2607.
[16] 张迪, 王勇强, 周月桂. 低尘SCR系统单孔催化剂模拟研究[J]. 锅炉技术, 2018, 49(5): 1-6.
[17] 沈伯雄, 赵宁, 刘亭. 烟气脱硝选择性催化还原催化剂反应模拟研究[J]. 中国电机工程学报, 2011, 31(8): 31-37.
[18] 叶蒙双, 冯晓露, 张政江. 先进预测控制在SCR控制系统中的运用[J]. 科学技术与工程, 2016, 16(10): 155-158. doi: 10.3969/j.issn.1671-1815.2016.10.031
[19] ZHANG K, FANGMING X, ZHIQIANG W, et al. Research on prediction model of formation temperature of ammonium bisulfate in air preheater of coal-fired power plant[J]. Chinese Journal of Chemical Engineering, 2022, 48: 202-210. doi: 10.1016/j.cjche.2021.09.018
[20] SCHAUB G, UNRUH D, WANG J, et al. Kinetic analysis of selective catalytic NOx reduction (SCR) in a catalytic filter[J]. Chemical Engineering and Processing:Process Intensification, 2003, 42(5): 365-371. doi: 10.1016/S0255-2701(02)00056-9
[21] ZHU S, HUI J, LYU Q, et al. Experimental study on pulverized coal combustion preheated by a circulating fluidized bed: Preheating characteristics for peak shaving[J]. Fuel, 2022, 324: 124684. doi: 10.1016/j.fuel.2022.124684
[22] LIN L, XU B, XIA S. Multi-angle economic analysis of coal-fired units with plasma ignition and oil injection during deep peak shaving in China[J]. Applied Sciences, 2019, 9(24): 5399. doi: 10.3390/app9245399
[23] SZYMASZEK A, SAMOJEDEN B, MOTAK M. The deactivation of industrial SCR catalysts—A short review[J]. Energies, 2020, 13(15): 3870. doi: 10.3390/en13153870
[24] SHANG D, LI B, LIU Z. Large eddy simulation of transient turbulent flow and mixing process in an SCR denitration system[J]. Chemical Engineering Research and Design, 2019, 141: 279-289. doi: 10.1016/j.cherd.2018.11.006
[25] XIN Q, HUA Z, FU Y, et al. Investigation on optimal active layer thickness and pore size in dual-layer NH3-SCR monolith for low SO2 oxidation by numerical simulation[J]. Fuel, 2020, 279: 118420. doi: 10.1016/j.fuel.2020.118420
[26] CHEN L, LIAO Y, XIN S, et al. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas[J]. Fuel, 2020, 262: 116485. doi: 10.1016/j.fuel.2019.116485
[27] ZHOU Z, CHANG J, WANG X. Large eddy simulation of hydrodynamics and deNO x process in a coal-fired power plant SCR system[J]. Journal of Environmental Management, 2022, 320: 115800. doi: 10.1016/j.jenvman.2022.115800
[28] 金森旺, 吴芳, 孙献斌, 等. 床温及SNCR脱硝对CFB锅炉NO x 和N2O排放影响的试验研究[J]. 热力发电, 2020, 49(5): 104-110.
[29] LIU L, ZHANG L, ZHANG Q, et al. Catalytic performance and kinetics of Wire-mesh honeycomb catalyst for reduction of NO with NH3[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7199-7203. doi: 10.1166/jnn.2014.8972
[30] 周智健, 王信, 常剑, 等. 660MW燃煤电厂SCR脱硝系统CFD模拟优化研究[J]. 中国电机工程学报, 2021, 41(19): 6688-6699. doi: 10.13334/j.0258-8013.pcsee.202015
[31] 刘景龙, 张利孟, 赵中华, 等. 1000MW燃煤机组SCR脱硝系统变负荷特性试验研究[J]. 山东电力技术, 2022, 49(10): 66-73.
[32] 欧阳朔. 电站锅炉尾部烟道流场数值模拟分析及优化[D]. 北京: 华北电力大学(北京), 2022.