[1] |
ELAHI A, AJAZ M, REHMAN A, et al. Isolation, characterization, and multiple heavy metal-resistant and hexavalent chromium-reducing Microbacterium testaceum B-HS2 from tannery effluent[J]. Journal of King Saud University-Science, 2019, 31(4): 1437-1444. doi: 10.1016/j.jksus.2019.02.007
|
[2] |
PRADHAN D, SUKLA L B, MISHRA B B, et al. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp.[J]. Journal of Cleaner Production, 2019, 209: 617-629. doi: 10.1016/j.jclepro.2018.10.288
|
[3] |
LIANG J, HUANG X, YAN J, et al. A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762
|
[4] |
JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014, 7(2): 60-72. doi: 10.2478/intox-2014-0009
|
[5] |
LACALLE R G, APARICIO J D, ARTETXE U, et al. Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation[J]. Heliyon, 2020, 6(8): e04550. doi: 10.1016/j.heliyon.2020.e04550
|
[6] |
NOVOTNIK B, ŠČANČAR J, MILAČIČ R, et al. Cytotoxic and genotoxic potential of Cr (VI) , Cr (III) -nitrate and Cr (III) -EDTA complex in human hepatoma (HepG2) cells[J]. Chemosphere, 2016, 154: 124-131. doi: 10.1016/j.chemosphere.2016.03.118
|
[7] |
MAO L, GAO B, DENG N, et al. Oxidation behavior of Cr (III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides[J]. Chemosphere, 2016, 145: 1-9. doi: 10.1016/j.chemosphere.2015.11.053
|
[8] |
HE X, QIU X, CHEN J. Preparation of Fe (II) –Al layered double hydroxides: Application to the adsorption/reduction of chromium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 362-374.
|
[9] |
STOLLER M, SACCO O, VILARDI G, et al. Technical-economic evaluation on chromium recovery from tannery wastewater streams by means of membrane processes[J]. Desalination and Water Treatment, 2018, 127: 57-63. doi: 10.5004/dwt.2018.22533
|
[10] |
BANERJEE S, MISRA A, CHAUDHURY S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials, 2019, 367: 215-223. doi: 10.1016/j.jhazmat.2018.12.038
|
[11] |
ELAHI A, REHMAN A. Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress[J]. Biotechnology Reports, 2019, 21: e00307. doi: 10.1016/j.btre.2019.e00307
|
[12] |
HUANG X N, MIN D, LIU D F, et al. Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila[J]. Environment International, 2019, 129: 86-94. doi: 10.1016/j.envint.2019.05.016
|
[13] |
ZENG Q, HU Y, YANG Y, et al. Cell envelop is the key site for Cr (Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr (Ⅵ) reducing bacterium[J]. Journal of Hazardous Materials, 2019, 368: 149-155. doi: 10.1016/j.jhazmat.2019.01.031
|
[14] |
PAL A, DUTTA S, PAUL A K. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil[J]. Current Microbiology, 2005, 51(5): 327-330. doi: 10.1007/s00284-005-0048-4
|
[15] |
ZHANG X H, LIU J, HUANG H T, et al. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz[J]. Chemosphere, 2007, 67(6): 1138-1143. doi: 10.1016/j.chemosphere.2006.11.014
|
[16] |
杨佩汶, 林毅, 林华, 等. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响[J]. 环境工程学报, 2023, 17(2): 507-516. doi: 10.12030/j.cjee.202210035
|
[17] |
王义安, 张学洪, 郑君健, 等. 不同基质碳源下人工湿地微生物燃料电池的电化学性能及微生物群落结构[J]. 环境工程学报, 2021, 15(11): 3696-3706. doi: 10.12030/j.cjee.202108060
|
[18] |
WANG Y, ZHANG X, LIN Y, et al. The electron transport mechanism of downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell when used to treat Cr (VI) and p-chlorophenol[J]. Environmental Science and Pollution Research, 2022, 30(13): 37929-37945. doi: 10.1007/s11356-022-24872-y
|
[19] |
SATHVIKA T, MANASI, RAJESH V, et al. Adsorption of chromium supported with various column modelling studies through the synergistic influence of Aspergillus and cellulose[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3193-3204. doi: 10.1016/j.jece.2016.06.027
|
[20] |
KARTHIK C, RAMKUMAR V S, PUGAZHENDHI A, et al. Biosorption and biotransformation of Cr (VI) by novel Cellulosimicrobium funkei strain AR6[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 282-290. doi: 10.1016/j.jtice.2016.11.006
|
[21] |
BHARAGAVA R N, MISHRA S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries[J]. Ecotoxicology and Environmental Safety, 2018, 147: 102-109. doi: 10.1016/j.ecoenv.2017.08.040
|
[22] |
KARTHIK, C, BARATHI, S, PUGAZHENDHI, A, et al. Evaluation of Cr (VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium[J]. Journal of Hazardous Materials, 2017, 333: 42-53. doi: 10.1016/j.jhazmat.2017.03.037
|
[23] |
LIAO Q, TANG J, WANG H, et al. Dynamic proteome responses to sequential reduction of Cr (VI) and adsorption of Pb (II) by Pannonibacter phragmitetus BB[J]. Journal of Hazardous Materials, 2020, 386: 121988. doi: 10.1016/j.jhazmat.2019.121988
|
[24] |
GANG H, XIAO C, XIAO Y, et al. Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress[J]. Environment International, 2019, 127: 94-102. doi: 10.1016/j.envint.2019.03.016
|
[25] |
LI L, SHANG X, SUN X, et al. Bioremediation potential of hexavalent chromium by a novel bacterium Stenotrophomonas acidaminiphila 4-1[J]. Environmental Technology & Innovation, 2021, 22: 101409.
|
[26] |
MISHRA S, CHEN S, SARATALE G D, et al. Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products[J]. Journal of Water Process Engineering, 2021, 39: 101748. doi: 10.1016/j.jwpe.2020.101748
|
[27] |
VERMA T, MAURYA A. Isolation of potential bacteria from tannery effluent capable to simultaneously tolerate hexavalent chromium and pentachlorophenol and its possible use in effluent bioremediation[J]. The International Journal of Engineering and Science, 2003, 2-9: 64-69.
|
[28] |
YAN X, LIU X, ZHANG M, et al. Lab-scale evaluation of the microbial bioremediation of Cr (VI) : contributions of biosorption, bioreduction, and biomineralization[J]. Environmental Science and Pollution Research, 2021, 28(18): 22359-22371. doi: 10.1007/s11356-020-11852-3
|
[29] |
NARDE G K, KAPLEY A, PUROHIT H J. Isolation and Characterization of Citrobacter Strain HPC255 for Broad-Range Substrate Specificity for Chlorophenols[J]. Current Microbiology, 2004, 48(6): 419-423.
|
[30] |
MUÑOZ A J, RUIZ E, ABRIOUEL H, et al. Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption[J]. Chemical Engineering Journal, 2012, 210: 325-332. doi: 10.1016/j.cej.2012.09.007
|
[31] |
ILIAS M, RAFIQULLAH I M, DEBNATH B C, et al. Isolation and Characterization of Chromium (VI) -Reducing Bacteria from Tannery Effluents[J]. Indian Journal of Microbiology, 2011, 51(1): 76-81. doi: 10.1007/s12088-011-0095-4
|
[32] |
CUI X, WANG Y, LIU J, et al. Bacillus dabaoshanensis sp. nov. , a Cr (VI) -tolerant bacterium isolated from heavy-metal-contaminated soil[J]. Archives of Microbiology, 2015, 197 (4) : 513-520.
|
[33] |
SANJAY M S, SUDARSANAM D, RAJ G A, et al. Isolation and identification of chromium reducing bacteria from tannery effluent[J]. Journal of King Saud University-Science, 2020, 32(1): 265-271. doi: 10.1016/j.jksus.2018.05.001
|
[34] |
NANDA M, KUMAR V, SHARMA D K. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water[J]. Aquatic Toxicology, 2019, 212: 1-10. doi: 10.1016/j.aquatox.2019.04.011
|
[35] |
CHAI L, DING C, LI J, et al. Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium[J]. Environmental Pollution, 2019, 249: 63-73. doi: 10.1016/j.envpol.2019.03.005
|
[36] |
BARAN I, DÜZGÜN A P, MUMCUOĞLU İ, et al. Chronic lower extremity wound infection due to Kerstersia gyiorum in a patient with Buerger’s disease: a case report[J]. BMC Infectious Diseases, 2017, 17(1): 608. doi: 10.1186/s12879-017-2711-3
|
[37] |
TEKERLEKOPOULOU A G, TSIFLIKIOTOU M, AKRITIDOU L, et al. Modelling of biological Cr (VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems[J]. Water Research, 2013, 47(2): 623-636. doi: 10.1016/j.watres.2012.10.034
|
[38] |
MURUGAVELH S, MOHANTY K. Isolation, identification and characterization of Cr (VI) reducing Bacillus cereus from chromium contaminated soil[J]. Chemical Engineering Journal, 2013, 230: 1-9. doi: 10.1016/j.cej.2013.06.049
|
[39] |
FOCARDI S, PEPI M, LANDI G, et al. Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04[J]. International Biodeterioration & Biodegradation, 2012, 66(1): 63-70.
|
[40] |
MURUGAVELH S, MOHANTY K. Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp.[J]. Chemical Engineering Journal, 2012, 203: 415-422. doi: 10.1016/j.cej.2012.07.069
|
[41] |
ISHII S, SUZUKI S, YAMANAKA Y, et al. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources[J]. Bioelectrochemistry, 2017, 117: 74-82. doi: 10.1016/j.bioelechem.2017.06.003
|
[42] |
WANG X, ZHANG Y, SUN X, et al. Efficient removal of hexavalent chromium from water by Bacillus sp. Y2-7 with production of extracellular polymeric substances[J]. Environmental Technology, 2023. DOI: 10.1080/09593330.2023.2185817.
|
[43] |
SURESH G, RAVICHANDRAN N, RAMESH B, et al. Isolation and characterization of chromium-tolerant bacteria from chromium-containing waste water[J]. Bioremediation, Biodiversity and Bioavailability, 2011, 5(1): 22-27.
|
[44] |
LIU Y G, XU W H, ZENG G M, et al. Cr (VI) reduction by Bacillus sp. isolated from chromium landfill[J]. Process Biochemistry, 2006, 41(9): 1981-1986. doi: 10.1016/j.procbio.2006.04.020
|
[45] |
SHEKHAR S, SUNDARAMANICKAM A, VIJAYANSIVA G. Detoxification hexavalent chromium by potential chromate reducing bacteria isolated from turnery effluent[J]. American Journal of Research Communication, 2014, 2(2): 205-216.
|
[46] |
BANERJEE S, JOSHI S R, MANDAL T, HALDER G N. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water[J]. Chemosphere, 2017, 67: 269-281.
|
[47] |
LI M, HE Z, HU Y, et al. Both cell envelope and cytoplasm were the locations for chromium (VI) reduction by Bacillus sp. M6[J]. Bioresource Technology, 2019, 273: 130-135. doi: 10.1016/j.biortech.2018.11.006
|
[48] |
SANDANA MALA J G, SUJATHA D, ROSE C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation[J]. Microbiological Research, 2015, 170: 235-241. doi: 10.1016/j.micres.2014.06.001
|
[49] |
HORA A, SHETTY V K. Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4[J]. Preparative Biochemistry and Biotechnology, 2015, 45(8): 769-784. doi: 10.1080/10826068.2014.952385
|
[50] |
XU L, LUO M, JIANG C, et al. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions[J]. Applied Biochemistry and Biotechnology, 2012, 166(4): 933-941. doi: 10.1007/s12010-011-9481-y
|
[51] |
JAIN P K, RAMACHANDRAN S, SHUKLA V, et al. Characterization of metal and antibiotic resistance in a bacterial population isolated from a copper mining industry[J]. International Journal of Integrative Biology, 2009, 6: 57-61.
|
[52] |
VERMA T, GARG S K, RAMTEKE P W. Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent[J]. Journal of Applied Microbiology, 2009, 107(5): 1425-1432. doi: 10.1111/j.1365-2672.2009.04326.x
|
[53] |
CHEN Z, HUANG Z, CHENG Y, et al. Cr (VI) uptake mechanism of Bacillus cereus[J]. Chemosphere, 2012, 87(3): 211-216. doi: 10.1016/j.chemosphere.2011.12.050
|
[54] |
HE M, LI X, LIU H, et al. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1[J]. Journal of Hazardous Materials, 2011, 185(2/3): 682-688.
|
[55] |
WANG X S, LI Y, HUANG L P, et al. Adsorption of Cr (VI) from aqueous solutions by Staphylococcus aureus biomass[J]. Clean-Soil, Air, Water, 2010, 38(5/6): 500-505.
|
[56] |
SINGH R, KUMAR A, KIRROLIA A, et al. Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study[J]. Bioresource Technology, 2011, 102(2): 677-682. doi: 10.1016/j.biortech.2010.08.041
|
[57] |
MAJUMDER R, SHEIKH L, NASKAR A, et al. Depletion of Cr (VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach[J]. Scientific Reports, 2017, 7(1): 11254. doi: 10.1038/s41598-017-10160-0
|
[58] |
BROWN S D, THOMPSON M R, VERBERKMOES N C, et al. Molecular dynamics of the Shewanella oneidensis response to chromate stress[J]. Molecular & Cellular Proteomics, 2006, 5(6): 1054-1071.
|