[1] |
黄镁宁, 宁寻安, 张建易, 等. 漫水河清远流域磷污染特征及富里酸对沉积物释磷的影响[J]. 环境工程学报, 2022, 16(5): 1549-1557. doi: 10.12030/j.cjee.202112023
|
[2] |
CETINER Z S, WOOD S A, GAMMONS C H. The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 ℃[J]. Chemical Geology. 2005, 217(1/2): 147-169.
|
[3] |
HE Q, ZHAO H, TENG Z, et al. Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances[J]. Chemosphere. 2022, 303: 134987. doi: 10.1016/j.chemosphere.2022.134987
|
[4] |
SHAN S, ZHANG T, WANG W, et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation[J]. Chemical Engineering Journal. 2021, 425: 128894. doi: 10.1016/j.cej.2021.128894
|
[5] |
YU Y, YU L, KOH K Y, et al. Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review[J]. Critical reviews in environmental Science and Technology. 2018, 48: 1127-1164. doi: 10.1080/10643389.2018.1514930
|
[6] |
余杰, 鱼红霞, 杜义鹏, 等. 城市垃圾焚烧厂直接掺烧城市污泥处置技术及其污染控制[J]. 环境工程学报, 2020, 14(11): 3155-3161. doi: 10.12030/j.cjee.202001003
|
[7] |
何李文泽, 陈钰, 孙飞, 等. 镧改性净水污泥水热炭对水体中磷的吸附特性及底泥内源磷的固定[J]. 环境科学, 2023, 44(6): 3288-3300. doi: 10.13227/j.hjkx.202207114
|
[8] |
LIAN J, ZHOU F, CHEN B, et al. Enhanced adsorption of molybdenum (VI) onto drinking water treatment residues modified by thermal treatment and acid activation[J]. Journal of Cleaner Production. 2019, 244(1): 118719.
|
[9] |
LI Y, ZHANG Y, SU F, et al. Adsorption behaviour of microplastics on the heavy metal Cr (VI) before and after ageing[J]. Chemosphere. 2022, 302: 134865. doi: 10.1016/j.chemosphere.2022.134865
|
[10] |
张玉妹, 韩乙萱, 魏杰, 等. 碱改性净水污泥对水中氨氮的吸附效能研究[J]. 环境科学学报, 2014, 34(10): 2484-2490. doi: 10.13671/j.hjkxxb.2014.0648
|
[11] |
TANG Y, CHEN Z, WEN Q. Magnetic powdery acrylic polymer with ultrahigh adsorption capacity for atenolol removal: Preparation, characterization, and microscopic adsorption mechanism[J]. Chemical engineering journal. 2022, 446: 137175. doi: 10.1016/j.cej.2022.137175
|
[12] |
TANG L, YU J, PANG Y, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal. 2018, 336: 160-169. doi: 10.1016/j.cej.2017.11.048
|
[13] |
ALMáši M, ZELEňáK V, OPANASENKO M, et al. Ce (III) and Lu (III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation[J]. Catalysis Today. 2015, 243: 184-194. doi: 10.1016/j.cattod.2014.07.028
|
[14] |
YANG H, ZENG G, LIU Y, et al. Study on adsorption and recovery utilization of phosphorus using alkali melting-hydrothermal treated oil-based drilling cutting ash[J]. Journal of Environmental Management. 2023, 332: 117373. doi: 10.1016/j.jenvman.2023.117373
|
[15] |
徐晋, 马一凡, 姚国庆, 等. KOH活化小麦秸秆生物炭对废水中四环素的高效去除[J]. 环境科学, 2022, 43(12): 5635-5646. doi: 10.13227/j.hjkx.202201253
|
[16] |
HE J, XU Y, SHAO P, et al. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption[J]. Chemical Engineering Journal. 2020, 394: 124912. doi: 10.1016/j.cej.2020.124912
|
[17] |
WANG Y, XIE X, CHEN X, et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption[J]. Journal of Hazardous Materials. 2020, 396(8): 122626.
|
[18] |
LIU X, WANG Y, SMITH R L, et al. High-capacity structured MgO-Co adsorbent for removal of phosphorus from aqueous solutions[J]. Chemical Engineering Journal. 2021, 426(21): 131381.
|
[19] |
李迎春, 董良飞, 仝驰, 等. 稀土改性凹凸棒土对低浓度磷的吸附性能[J]. 环境工程学报, 2021, 15(10): 3214-3222. doi: 10.12030/j.cjee.202106129
|
[20] |
GUPTA N, SAIFUDDIN M, KIM S, et al. Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide[J]. Journal of Molecular Liquids. 2020, 297(1): 111935.
|
[21] |
宋志伟, 卿卓霖, 钱锋, 等. 海藻酸钠/锆@钙水凝胶的制备及其对磷的吸附研究[J]. 环境科学学报报, 2022, 42(3): 151-161.
|
[22] |
PAPPER R A, COUPERTHWAITE S J, MILLAR G J. Re-use of waste red mud: Production of a functional iron oxide adsorbent for removal of phosphorous[J]. Journal of Water Process Engineering. 2018, 25: 138-148. doi: 10.1016/j.jwpe.2018.07.006
|
[23] |
LI J, WU B, ZHOU T, et al. Preferential removal of phosphorus using modified steel slag and cement combination for its implications in engineering applications[J]. Environmental Technology & Innovation. 2018, 10: 264-274.
|
[24] |
ASAOKA S, KAWAKAMI K, SAITO H, et al. Adsorption of phosphate onto lanthanum-doped coal fly ash—Blast furnace cement composite[J]. Journal of Hazardous Materials. 2020, 406(2): 124780.
|
[25] |
LONG F, GONG J L, ZENG G M, et al. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide[J]. Chemical Engineering Journal. 2011, 171(2): 448-455. doi: 10.1016/j.cej.2011.03.102
|
[26] |
LIN X, XIE Y, LU H, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal. 2021, 413: 127530. doi: 10.1016/j.cej.2020.127530
|
[27] |
TRINH V T, NGUYEN T M P, VAN H T, et al. Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue[J]. Scientific Reports. 2020, 10: 3634. doi: 10.1038/s41598-020-60542-0
|
[28] |
YUAN J, ZHU Y, WANG J, et al. Preparation and application of Mg-Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage[J]. Food and Bioproducts Processing. 2021, 126(22): 293-304.
|
[29] |
LIN W L, GU J C, WANG W Y, et al. Adsorption of phosphorus by Ce-modified Lithium Silica Fume[J]. Applied Mechanics & Materials. 2013, 368-370(III): 687-691.
|
[30] |
YANG W, SHI X, DONG H, et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal[J]. Chemical Engineering Journal. 2021, 405: 126649. doi: 10.1016/j.cej.2020.126649
|
[31] |
YANG Q, WANG X, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology. 2017, 247: 537-544.
|
[32] |
WEI X, SUN Y, PAN D, et al. Adsorption properties of Na-palygorskite for Cs sequestration: Effect of pH, ionic strength, humic acid and temperature[J]. Applied Clay Science. 2019, 183: 105363. doi: 10.1016/j.clay.2019.105363
|
[33] |
HE J, XU Y, XIONG Z, et al. The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent[J]. Chemosphere. 2020, 256(3): 127056.
|
[34] |
LV N, LI X, et al. Phosphorus removal from wastewater using Ca-modified attapulgite: Fixed-bed column performance and breakthrough curves analysis[J]. Journal of Environmental Management. 2023, 328: 116905. doi: 10.1016/j.jenvman.2022.116905
|
[35] |
GU Y, XIE D, MA Y, et al. Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation[J]. ACS Applied Materials & Interfaces. 2017, 9(37): 32151-32160.
|
[36] |
DU M, ZHANG Y, WANG Z. La-doped activated carbon as high-efficiency phosphorus adsorbent: DFT exploration of the adsorption mechanism[J]. Separation and Purification Technology. 2022, 298: 121585. doi: 10.1016/j.seppur.2022.121585
|
[37] |
MIN X, WU X, SHAO P, et al. Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number[J]. Chemical Engineering Journal. 2019, 358: 321-330. doi: 10.1016/j.cej.2018.10.043
|