[1] GAO J Q, XIONG Z T, ZHANG J D, et al. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes[J]. Desalination, 2009, 242(1/2/3): 193-204.
[2] 李俊, 李科林. 水生植物处理污染水研究现状及应用前景[J]. 安徽农业科学, 2007, 35(34): 11159-11161. doi: 10.3969/j.issn.0517-6611.2007.34.099
[3] LI W T, CHEN S Y, XU Z X, et al. Characterization of dissolved organic matter in municipal wastewater using fluorescence PARAFAC analysis and chromatography multi-excitation/emission scan: a comparative study[J]. Environmental Science & Technology, 2014, 48(5): 2603-2609.
[4] 刘新, 刘浩, 江和龙, 等. 不同水生植物腐解过程中有色可溶有机物 (CDOM) 的产生过程及微生物群落变化分析[J]. 长江流域资源与环境, 2020, 29(5): 1140-1149.
[5] 汪琪. 4种大型水生植物腐烂分解过程研究[D]. 淮南: 安徽理工大学, 2020.
[6] 王晓栋. 南四湖主要水生植物腐烂过程及污染释放通量研究[D]. 济南: 山东建筑大学, 2019.
[7] WU S Q, HE S B, ZHOU W L, et al. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland[J]. Environmental Pollution, 2017, 231(1): 1122-1133.
[8] YUAN D H, GUO X J, WEN L, et al. Detection of copper (II) and cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis[J]. Environmental Pollution, 2015, 204: 152-160. doi: 10.1016/j.envpol.2015.04.030
[9] CHIBA DE CASTRO W A, CUNHA-SANTINO M B, BIANCHINI J. Anaerobic decomposition of a native and an exotic submersed macrophyte in two tropical reservoirs[J]. Brazilian Journal of Biology, 2017, 73(2): 299-307.
[10] LI P H, HUR J. Utilization of UV-Vis spectroscopy and related data analysis for dissolved organic matter (DOM) studies: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. doi: 10.1080/10643389.2017.1309186
[11] 于莉莉. 富营养化湖泊植物源溶解性有机质光降解行为及影响因素[D]. 哈尔滨: 东北林业大学, 2020.
[12] ZHANG L S, ZHANG S H, LV X Y, et al. Dissolved organic matter release in overlying water and bacterial community shifts in biofilm during the decomposition of Myriophyllum verticillatum[J]. Science of the Total Environment, 2018, 633: 929-937. doi: 10.1016/j.scitotenv.2018.03.275
[13] 杨枫. 滇池COD特征及升高原因解析[D]. 北京: 中国环境科学研究院, 2017.
[14] WU S Q, HE S B, HUANG J C, et al. Decomposition of emergent aquatic plant (Cattail) litter under different conditions and the influence on water quality[J]. Water, Air, & Soil Pollution, 2017, 228 (2) : 1-14.
[15] HUDSON N, BAKER A, REYNOLDS D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review[J]. River Research and Applications, 2007, 23(6): 631-649. doi: 10.1002/rra.1005
[16] ZEPP R G, SHELDON W M, MORAN M A. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices[J]. Marine chemistry, 2004, 89(1): 15-36.
[17] WU H, LU X, YANG Q, et al. The early stage litter decomposition and its influencing factors in the wetland of the Sanjiang Plain, China[J]. Acta Ecologica Sicica, 2007, 7(10): 4027-4035.
[18] 曹培培, 刘茂松, 唐金艳, 等. 几种水生植物腐解过程的比较研究[J]. 生态学报, 2014, 34(14): 3848-3858.
[19] 洪志强, 熊瑛, 李艳, 等. 白洋淀沉水植物腐解释放溶解性有机物光谱特性[J]. 生态学报, 2016, 36(19): 6308-6317.
[20] 杜伊, 胡玮璇, 王晓燕, 等. 北京市北运河水体中化学需氧量组分含量及其可生化性研究[J]. 湿地科学, 2017, 15(3): 470-477. doi: 10.13248/j.cnki.wetlandsci.2017.03.022
[21] MIGLIORINI G H, ROMERO G Q. Warming and leaf litter functional diversity, not litter quality, drive decomposition in a freshwater ecosystem[J]. Scientific Reports, 2020, 10(1): 20333. doi: 10.1038/s41598-020-77382-7
[22] FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452
[23] AOKI S, FUSE Y, YAMADA E. Determinations of humic substances and other dissolved organic matter and their effects on the increase of COD in Lake Biwa[J]. Analytical Sciences, 2004, 20(1): 159-164. doi: 10.2116/analsci.20.159
[24] GUO W D, XU J, WANG J P, et al. Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis[J]. Journal of Environmental Sciences, 2010, 22(11): 1728-1734. doi: 10.1016/S1001-0742(09)60312-0
[25] 王彤, 文刚, 黄廷林, 等. 水库热分层期沉积物中有机物特性及对好氧反硝化细菌脱氮的影响[J]. 环境科学, 2020, 41(11): 5027-5036. doi: 10.13227/j.hjkx.202004250
[26] HOSEN J D, MCDONOUGH O T, FEBRIA C M, et al. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams[J]. Environmental Science & Technology, 2014, 48(14): 7817-7824.
[27] YAN J F, WANG L, HU Y, et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma, 2018, 319: 194-203. doi: 10.1016/j.geoderma.2018.01.009
[28] 闫兴成, 张重乾, 季铭, 等. 富营养化湖泊夏季表层水体温室气体浓度及其影响因[J]. 湖泊科学, 2018, 30(5): 1420-1428. doi: 10.18307/2018.0523
[29] 张运林, 朱广伟, 秦伯强, 等. 有色可溶性有机物 (CDOM) 吸收作为湖库化学需氧量监测替代指标的探讨[J]. 湖泊科学, 2020, 32(6): 1575-1584. doi: 10.18307/2020.0602
[30] 邓焕广, 张智博, 刘涛, 等. 城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素[J]. 湖泊科学, 2019, 31(4): 1055-1063. doi: 10.18307/2019.0409
[31] 王荣欣. 白洋淀典型水生植物腐解水质变化特征与元素释放、归趋分析[D]. 郑州: 华北水利水电大学, 2022.
[32] 张新厚. 三江平原湿地植物立枯分解研究[D]. 长春: 中国科学院研究生院 (东北地理与农业生态研究所) , 2015.