[1] 陈进国. 空间场视角下煤炭能源基地的可持续发展评价与情景仿真研究[D]. 北京: 中国矿业大学, 2018.
[2] 付强强. 煤气化废水水质分析及深度处理工艺研究[D]. 青岛: 青岛科技大学, 2016.
[3] LIU Y,YANG J,et al. Modeling,simulation,and techno-economic analysis of Lurgi gasification and BGL gasification for coal-to-SNG[J]. Chemistry Engineering Research and Design, 2017, 117: 355-368. doi: 10.1016/j.cherd.2016.10.048
[4] 郑彭生,郭中权. 国内煤气化废水处理关键问题分析[J]. 水处理技术, 2018, 44(3): 17-20. doi: 10.16796/j.cnki.1000-3770.2018.03.004
[5] 纪华,夏立江,王峰,等. 改性膨润土对垃圾填埋场渗滤液吸附效果[J]. 环境工程学报, 2012, 6(3): 848-854.
[6] 胡雪峰. 改性膨润土的制备及其吸附性能研究[D]. 武汉: 武汉理工大学, 2008.
[7] 郑越,刘方,吴永贵. 粉煤灰对工业废水中氨氮的吸附性能研究[J]. 环境科学与技术, 2011, 34(1): 4-7.
[8] 林俊雄,詹树林,方明晖,等. 三种吸附剂的改性与染料吸附特性比较研究[J]. 浙江大学学报 (工学版) , 2006(12): 2031-2036.
[9] 王泽龙,李顺义,吴朕君. 膨润土改性和复配及在废水处理中的应用进展[J]. 工业水处理, 2022, 42(2): 11-18.
[10] 史兵方,左卫元,仝海娟. 改性膨润土对水体中多环芳烃的吸附[J]. 环境工程学报, 2015, 9(4): 1680-1686. doi: 10.12030/j.cjee.20150426
[11] YAO Z,JI X,SARKER P,et al. A comprehensive review on the applications of coal fly ash[J]. Earth Science Reviews, 2015, 141(1): 105-121.
[12] 罗秋艳,黄正根,范文哲,等. 复合改性膨润土对2,4,6-三氯苯酚和Pb2+的吸附行为研究[J]. 离子交换与吸附, 2019, 35(1): 20-29.
[13] BATABYAL D,SAHU A,CHAUDHURI S K. Kinetics and mechanism of removal of 2,4-dimethyl phenol from aqueous solutions with coal fly ash[J]. Separations Technology, 1995, 5(4): 179-186. doi: 10.1016/0956-9618(95)00124-7
[14] KHANSAA A, ETHAR M. A. Effective approach of activated Jordanian Bentonite by sodium ions for total phenolic compounds removal from olive mill wastewater[J]. Journal of Chemistry, 2021: 16.
[15] 赵伟高,谷启源,赵鹏,等. 粉煤灰对焦化废水中挥发酚的吸附机理研究[J]. 工业水处理, 2015, 35(7): 68-72.
[16] WEIWEI M,YUXING H,CHUNYAN X,et al. Biotoxicity assessment and toxicity mechanism on coal gasification wastewater (CGW) :A comparative analysis of effluent from different treatment processes[J]. Science of the Total Environment, 2018, 637-638: 1-8. doi: 10.1016/j.scitotenv.2018.04.404
[17] XIAO,KANG,LIANG,et al. Fluorescence quotient of excitation-emission matrices as a potential indicator of organic matter behavior in membrane bioreactors[J]. Environmental science:Water Research & Technology, 2018, 4(2): 281-290.
[18] CHEN W,PAUL W,LEENHEER J A,et al. Fluorescence Excitation - Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter[J]. Environmental Science & Technology:ES& T, 2003, 37(24): 5701-5710.
[19] ZENG F R,YONG-QING XI,ZHANG S Q,et al. Determination of phenol and hydroquinone in environmental water by fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2007, 26(5): 76-79.
[20] MARTIN,CHOI M F. Fluorescence quenching method for the determination of catechol with gold nanoparticles and tyrosinase hybrid system[J]. Chinese Chemical Letters, 2009, 21(3): 346-348.
[21] 李杰松,黄璐. 改性膨润土对重金属的吸附性能研究[J]. 水处理技术, 2023, 49(5): 56-62. doi: 10.16796/j.cnki.1000-3770.2023.05.011
[22] 马清亮. 磁性膨润土改性吸附材料的制备及其应用研究[D]. 太原: 太原理工大学, 2016.
[23] 李静. 有机膨润土的制备、表征及其对废水中酚类化合物的吸附研究[D]. 太原: 太原理工大学, 2013.
[24] XH A,HZ A,GZ A,et al. Potential of removing Cd (II) and Pb (II) from contaminated water using a newly modified fly ash-ScienceDirect[J]. Chemosphere, 2020, 242: 125-148.
[25] GARCÍA -LODEIRO I,FERNÁNDEZ -JIMÉNEZ A,BLANCO M T,et al. FTIR study of the sol–gel synthesis of cementitious gels:C-S-H and N-A-S-H[J]. Journal of Sol-Gel Science and Technology, 2008, 45(1): 63-72. doi: 10.1007/s10971-007-1643-6
[26] MOSTAFA N Y,KISHAR E A,ABO-El-ENEIN S A. FTIR study and cation exchange capacity of Fe3+ and Mg2+ substituted calcium silicate hydrates[J]. Journal of Alloys & Compounds, 2009, 473(1/2): 538-542.
[27] 任晓宇. 粉煤灰基沸石的合成、生长机理及其吸附性能的研究[D]. 杭州: 浙江大学, 2020.