[1] 肖涵, 韩志伟, 熊佳, 等. 贵州晴隆锑矿尾砂中锑和砷的生物有效性及生态风险评价[J]. 环境工程, 2022, 40(5): 123-132. XIAO H, HAN Z W, XIONG J, et al. Bioavailability and ecological risk assessment of Sb and As in tailings of Qinglong antimony mine in Guizhou[J]. Environmental Engineering, 2022, 40(5): 123-132 (in Chinese).
[2] 任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449. doi: 10.7524/j.issn.0254-6108.2019090701 REN J, LIU X W, LI J, et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12): 3436-3449 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019090701
[3] HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. doi: 10.1016/j.jes.2018.05.023
[4] BOLAN N, KUMAR M, SINGH E, et al. Antimony contamination and its risk management in complex environmental settings: A review[J]. Environment International, 2022, 158: 106908. doi: 10.1016/j.envint.2021.106908
[5] HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545-559. doi: 10.1016/j.envpol.2017.01.057
[6] ESSINGTON M, STEWART M, VERGEER K. Adsorption of antimonate by kaolinite[J]. Soil Science Society of America Journal, 2017, 81(3): 514-525. doi: 10.2136/sssaj2016.12.0402
[7] ESSINGTON M E, STEWART M A. Adsorption of antimonate by gibbsite: Reversibility and the competitive effects of phosphate and sulfate[J]. Soil Science Society of America Journal, 2016, 80(5): 1197-1207. doi: 10.2136/sssaj2016.04.0129
[8] GUO X, WU Z, HE M, et al. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276: 339-345. doi: 10.1016/j.jhazmat.2014.05.025
[9] ESSINGTON M E, VERGEER K A. Adsorption of antimonate, phosphate, and sulfate by manganese dioxide: Competitive effects and surface complexation modeling[J]. Soil Science Society of America Journal, 2015, 79(3): 803-814. doi: 10.2136/sssaj2014.12.0482
[10] RAKSHIT S, SARKAR D, PUNAMIYA P, et al. Antimony sorption at gibbsite-water interface[J]. Chemosphere, 2011, 84(4): 480-483. doi: 10.1016/j.chemosphere.2011.03.028
[11] VERBEECK M, WARRINNIER R, GUSTAFSSON J P, et al. Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study[J]. Applied Geochemistry, 2019, 104: 33-41. doi: 10.1016/j.apgeochem.2019.03.012
[12] VITHANAGE M, RAJAPAKSHA A U, DOU X, et al. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils[J]. Journal of Colloid and Interface Science, 2013, 406: 217-224. doi: 10.1016/j.jcis.2013.05.053
[13] DIJKSTRA J J, MEEUSSEN J C L, COMANS R N J. Evaluation of a generic multisurface sorption model for inorganic soil contaminants[J]. Environmental Science & Technology, 2009, 43(16): 6196-6201.
[14] TAN D, LONG J, LI B, et al. Fraction and mobility of antimony and arsenic in three polluted soils: A comparison of single extraction and sequential extraction[J]. Chemosphere, 2018, 213: 533-540. doi: 10.1016/j.chemosphere.2018.09.089
[15] 赵晓鹏, 顾雪元. 地球化学模型在土壤重金属形态研究中的应用进展[J]. 环境化学, 2019, 38(1): 59-70. doi: 10.7524/j.issn.0254-6108.2018020101 ZHAO X P, GU X Y. Application of geochemical models in heavy metals speciation in soils: A review[J]. Environmental Chemistry, 2019, 38(1): 59-70 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018020101
[16] MITSUNOBU S, HARADA T, TAKAHASHI Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23): 7270-7276.
[17] SCHEINOST A C, ROSSBERG A, VANTELON D, et al. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3299-3312. doi: 10.1016/j.gca.2006.03.020
[18] ESSINGTON M, STEWART M. Adsorption of antimonate, sulfate, and phosphate by goethite: Reversibility and competitive effects[J]. Soil Science Society of America Journal, 2018, 82(4): 803-814 doi: 10.2136/sssaj2018.01.0003
[19] GUSTAFSSON J P. Arsenate adsorption to soils: Modelling the competition from humic substances[J]. Geoderma, 2006, 136(1-2): 320-330. doi: 10.1016/j.geoderma.2006.03.046
[20] HIEMSTRA T, MIA S, DUHAUT P B, et al. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate[J]. Environmental Science & Technology, 2013, 47(16): 9182-9189.
[21] KEIZER M G, VAN RIEMSDIJK W H. ECOSAT: A computer program for the calculation of speciation and transport in soil-water systems [Z]. The Netherlands; Wageningen University. 2009
[22] TAKAOKA M, FUKUTANI S, YAMAMOTO T, et al. Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure[J]. Analytical Sciences, 2005, 21(7): 769-773. doi: 10.2116/analsci.21.769
[23] OORTS K, SMOLDERS E, DEGRYSE F, et al. Solubility and toxicity of antimony trioxide (Sb2O3) in soil[J]. Environmental Science & Technology, 2008, 42(12): 4378-4383.
[24] HE M. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China[J]. Environmental Geochemistry and Health, 2007, 29(3): 209-219. doi: 10.1007/s10653-006-9066-9
[25] OKKENHAUG G, ZHU Y G, LUO L, et al. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 2011, 159(10): 2427-2434. doi: 10.1016/j.envpol.2011.06.028
[26] ZHANG S, WANG Y, PERVAIZ A, et al. Comparison of diffusive gradients in thin-films (DGT) and chemical extraction methods for predicting bioavailability of antimony and arsenic to maize[J]. Geoderma, 2018, 332: 1-9. doi: 10.1016/j.geoderma.2018.06.023
[27] ETTLER V, MIHALJEVIC M, SEBEK O, et al. Antimony availability in highly polluted soils and sediments - A comparison of single extractions[J]. Chemosphere, 2007, 68(3): 455-463. doi: 10.1016/j.chemosphere.2006.12.085
[28] BEESLEY L, MORENO-JIMÉNEZ E, CLEMENTE R, et al. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction[J]. Environmental Pollution, 2010, 158(1): 155-160. doi: 10.1016/j.envpol.2009.07.021
[29] ANTELO J, ARCE F, AVENA M, et al. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate[J]. Geoderma, 2007, 138(1-2): 12-19. doi: 10.1016/j.geoderma.2006.10.011
[30] VERBEECK M, HIEMSTRA T, THIRY Y, et al. Soil organic matter reduces the sorption of arsenate and phosphate: a soil profile study and geochemical modelling[J]. European Journal of Soil Science, 2017, 68(5): 678-688. doi: 10.1111/ejss.12447