[1] PILAT M J, PEGNAM R C. Particle emissions from chrome plating[J]. Aerosol Science and Technology, 2006, 40(8): 639-648. doi: 10.1080/02786820600763020
[2] 陆宏, 周锦阳, 杨帆, 等. 基于Meta分析的全氟化合物对鱼类生态毒性效应[J]. 环境科学,DOI:10.13227/j.hjkx.202209239.
[3] FUJII S, POLPRASERT C, TANAKA S, et al. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds: A review paper[J]. Journal of Water Supply:Research and Technology-Aqua, 2007, 56(5): 313-326. doi: 10.2166/aqua.2007.005
[4] MUNOZ G, LIU J, VO DUY S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review[J]. Trends in Environmental Analytical Chemistry, 2019, 23: e00066. doi: 10.1016/j.teac.2019.e00066
[5] WANG S, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18): 10163-10170.
[6] LI C H, REN X M, RUAN T, et al. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate[J]. Environmental Science & Technology, 2018, 52(5): 3232-9.
[7] XIN Y, REN X M, RUAN T, et al. Chlorinated polyfluoroalkylether sulfonates exhibit similar binding potency and activity to thyroid hormone transport proteins and nuclear receptors as perfluorooctanesulfonate[J]. Environmental Science & Technology, 2018, 52(16): 9412-9418.
[8] 赵楠, 孔媛, 张莹莹, 等. 基于1H NMR的代谢组学方法研究F-53B暴露对大鼠血清代谢表型的影响[J]. 环境化学, 2023, 42(1): 11-19.
[9] GAO Y, DENG S, DU Z, et al. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study[J]. Journal of Hazardous Materials, 2017, 323: 550-557. doi: 10.1016/j.jhazmat.2016.04.069
[10] ZHUO Q, WANG J, NIU J, et al. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes[J]. Chemical Engineering Journal, 2020, 379: 122280. doi: 10.1016/j.cej.2019.122280
[11] CAO H, ZHANG W, WANG C, et al. Photodegradation of F-53B in aqueous solutions through an UV/Iodide system[J]. Chemosphere, 2022, 292: 133436. doi: 10.1016/j.chemosphere.2021.133436
[12] ZHANG K, CAO Z, HUANG J, et al. Mechanochemical destruction of Chinese PFOS alternative F-53B[J]. Chemical Engineering Journal, 2016, 286: 387-393. doi: 10.1016/j.cej.2015.10.103
[13] ATEIA M, ARIFUZZAMAN M, PELLIZZERI S, et al. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels[J]. Water Research, 2019, 163: 114874. doi: 10.1016/j.watres.2019.114874
[14] DU Z, DENG S, LIU D, et al. Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process[J]. Chemical Engineering Journal, 2016, 290: 405-413. doi: 10.1016/j.cej.2016.01.077
[15] 兰馨, 高生军, 樊佳铜, 等. 氨修饰NiMg-MOF-74材料共吸附硫硝碳效能及其机理[J]. 环境工程学报, 2023, 17(1): 142-155.
[16] HE Y, WANG Z, WANG H, et al. Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications[J]. Coordination Chemistry Reviews, 2021, 429: 213618. doi: 10.1016/j.ccr.2020.213618
[17] DUAN C, YU Y, XIAO J, et al. Recent advancements in metal-organic frameworks for green applications[J]. Green Energy & Environment, 2021, 6(1): 33-49.
[18] FURUKAWA H, MüLLER U, YAGHI O M. “Heterogeneity within Order” in Metal-Organic Frameworks[J]. Angewandte Chemie International Edition, 2015, 54(11): 3417-3430. doi: 10.1002/anie.201410252
[19] 岳琳, 张迎, 张文丽, 等. Sn-MOF对染料废水中酸性大红3R的吸附特性[J]. 环境工程学报, 2019, 13(11): 2553-2561. doi: 10.12030/j.cjee.201812100
[20] 万红友, 阎靖炜, 郭丛, 等. Cu/Fe-MOF复合材料在水处理过程应用研究进展[J]. 水处理技术, 2022, 48(11): 1-7.
[21] XU G-R, AN Z-H, XU K, et al. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis and applications[J]. Coordination Chemistry Reviews, 2021, 427: 213554. doi: 10.1016/j.ccr.2020.213554
[22] KALAJ M, BENTZ K C, AYALA S, JR. , et al. MOF-polymer hybrid materials: From simple composites to tailored architectures[J]. Chemical Reviews, 2020, 120(16): 8267-8302. doi: 10.1021/acs.chemrev.9b00575
[23] WANG B, LV X-L, FENG D, et al. Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216. doi: 10.1021/jacs.6b01663
[24] LI Y, YANG Z, WANG Y, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nature Communication, 2017, 8(1): 1354. doi: 10.1038/s41467-017-01208-w
[25] BARPAGA D, ZHENG J, HAN K S, et al. Probing the sorption of perfluorooctanesulfonate using mesoporous metal–organic frameworks from aqueous solutions[J]. Inorganic Chemistry, 2019, 58(13): 8339-8346. doi: 10.1021/acs.inorgchem.9b00380
[26] LI X, WANG B, CAO Y, et al. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4548-4563.
[27] CHANG P-H, CHEN C-Y, MUKHOPADHYAY R. et al. Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water[J]. Journal of Colloid and Interface Science, 2022, 623: 627-636. doi: 10.1016/j.jcis.2022.05.050
[28] VENTURA K, ARRIETA R, MARCOS-HERNANDEZ M. et al. Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents[J]. Science of the Total Environment, 2020, 738: 139213. doi: 10.1016/j.scitotenv.2020.139213
[29] CHAKRABORTY G, PARK I-H, MEDISHETTY R, et al. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chemical Reviews, 2021, 121(7): 3751-3891. doi: 10.1021/acs.chemrev.0c01049
[30] ZHAO M, HUANG Y, PENG Y, et al. Two-dimensional metal-organic framework nanosheets: Synthesis and applications[J]. Chemical Society Reviews, 2018, 47(16): 6267-6295. doi: 10.1039/C8CS00268A
[31] XUE F, KUMAR P, XU, W, et al. , Direct synthesis of 7 nm-thick zinc(ii)-benzimidazole-acetate metal-organic framework nanosheets[J]. Chemistry of Materials, 2018, 30(1): 69-73. doi: 10.1021/acs.chemmater.7b04083
[32] TI B, LI L, LIU J. , et al. Global distribution potential and regional environmental risk of F-53B[J]. Science of the Total Environment, 2018, 640-641, 1365-1371.
[33] 柳泽伟. 金属-有机骨架材料吸附分离性能的功能化改性计算化学研究及高通量筛选[D]. 广州: 华南理工大学, 2019.
[34] ALLEN F H, BELLARD S, BRICE M, et al. The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 1979, 35(10): 2331-2339. doi: 10.1107/S0567740879009249
[35] RAPPé A K, CASEWIT C J, COLWELL K, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of American Chemical Society, 1992, 114(25): 10024-10035. doi: 10.1021/ja00051a040
[36] LI X, HOU M, QU X, et al. Electric‐field assisted hydrolysis-oxidation of MOFs: Hierarchical ternary (oxy) hydroxide micro-flowers for efficient electrocatalytic oxygen evolution[J]. Small, 2022, 18(6): 2104863. doi: 10.1002/smll.202104863
[37] 惠远峰. 新型金属有机骨架材料的合成及吸附染料废水的性能研究[J]. 功能材料, 2018, 49(7): 7188-7191.
[38] ZHAO S, LIU S, WANG F, et al. Sorption behavior of 6: 2 chlorinated polyfluorinated ether sulfonate (F-53B) on four kinds of nano-materials[J]. Science of the Total Environment, 2021, 757: 144064. doi: 10.1016/j.scitotenv.2020.144064
[39] QIAN J, SHEN M, WANG P, et al. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature[J]. Chemosphere, 2017, 182: 215-222. doi: 10.1016/j.chemosphere.2017.05.033