[1] |
刘志坚, 董元华, 张琇, 等. 卫宁平原农用地土壤重金属污染特征与生态风险研究[J]. 生态环境学报, 2022, 31(11): 2216-2224.
|
[2] |
RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365-385. doi: 10.1016/j.envint.2019.01.067
|
[3] |
黄卫, 庄荣浩, 刘辉, 等. 农田土壤镉污染现状与治理方法研究进展[J]. 湖南师范大学自然科学学报, 2022, 45(1): 49-56. doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201006
|
[4] |
杨滨娟, 黄国勤. 植物种植修复土壤重金属污染的模式、技术与效果综述[J]. 生态科学, 2022, 41(4): 251-256.
|
[5] |
李亚林, 刘蕾, 段万超, 等. 电动修复技术对土壤中镉迁移的影响[J]. 环境工程学报, 2016, 10(10): 6021-6027. doi: 10.12030/j.cjee.201603113
|
[6] |
CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181: 179-191. doi: 10.1016/j.electacta.2015.01.025
|
[7] |
刘玥, 牛婷雨, 李天国, 等. 电动力学辅助植物修复重金属污染土壤的特征机制与机遇[J]. 化工进展, 2020, 39(12): 5252-5265.
|
[8] |
魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 154-160.
|
[9] |
XU L, DAI H, SKUZA L, et al. The effects of different electric fields and electrodes on Solanum nigrum L. Cd hyperaccumulation in soil[J]. Chemosphere, 2020, 246: 125666. doi: 10.1016/j.chemosphere.2019.125666
|
[10] |
刘波, 陈绩, 马嘉伟, 等. 交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响[J]. 浙江农林大学学报, 2021, 38(6): 1238-1244.
|
[11] |
陈绩. 养分措施管理对交流电场下东南景天修复重金属污染土壤效率的影响[D]. 杭州: 浙江农林大学, 2019.
|
[12] |
BI R, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination[J]. Journal of Applied Electrochemistry, 2010, 40: 1217-1223. doi: 10.1007/s10800-010-0094-x
|
[13] |
杨光. 外加电场促进土壤重金属化学钝化研究[D]. 重庆: 重庆大学, 2019.
|
[14] |
HE R R, XI G, LIU K. Alleviating effect of extremely low frequency pulsed electric field on drought damage of maize seedling roots[J]. Journal of Luminescence, 2017, 188: 441-447. doi: 10.1016/j.jlumin.2017.04.042
|
[15] |
IWATA S, OKUMURA T, MURAMOTO Y, et al. Influence of AC electric field on plant growth[C]//2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Cancun, Mexico: IEEE, 2011: 179-182.
|
[16] |
谢探春, 王国兵, 尹颖, 等. 柳树对镉-芘复合污染土壤的修复潜力与耐受性研究[J]. 南京大学学报(自然科学), 2019, 55(2): 282-290.
|
[17] |
肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927-937.
|
[18] |
EHRMANN J, RITZ K. Plant: soil interactions in temperate multi-cropping production systems[J]. Plant and Soil, 2014, 376(1-2): 1-29. doi: 10.1007/s11104-013-1921-8
|
[19] |
倪幸, 李雅倩, 王胜男, 等. 交流电场促进柳树修复镉污染土壤[J]. 环境化学, 2019, 38(10): 2376-2385. doi: 10.7524/j.issn.0254-6108.2018112203
|
[20] |
MAO Z S, LIU B, FANG X Z, et al. Effects of different fertilizer treatments on AC electric field–assisted phytoremediation efficiency of Cd-contaminated soil by willow and Sedum[J]. Journal of Soils and Sediments, 2022, 22: 1460-1468. doi: 10.1007/s11368-022-03148-5
|
[21] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[22] |
潘雄波, 向丽霞, 胡晓辉, 等. 外源亚精胺对盐碱胁迫下番茄幼苗根系线粒体功能的影响[J]. 应用生态学报, 2016, 27(2): 491-498. doi: 10.13287/j.1001-9332.201602.009
|
[23] |
李欣雨, 刘函亦, 薛少琪, 等. 几种绿肥的根系分泌物对土壤锌的活化效应[J]. 中国土壤与肥料, 2022(1): 81-89. doi: 10.11838/sfsc.1673-6257.20512
|
[24] |
CAMESELLE C, CHIRAKKARA R A, REDDY R K. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities[J]. Chemosphere, 2013, 93(4): 626-636. doi: 10.1016/j.chemosphere.2013.06.029
|
[25] |
ELISHA O G, SUSANNE H K, ANJA K, et al. Impact of direct-electric-current on growth and bioactive compounds of African nightshade (Solanum scabrum Mill. ) plants[J]. Journal of Applied Botany and Food Quality, 2016, 89: 60-67.
|
[26] |
曹福亮, 吴家胜, 张往祥. 氮磷钾对银杏苗生长和生理特性的影响[J]. 南京林业大学学报(自然科学版), 2003(1): 63-66.
|
[27] |
XU L, DAI H, SKUZA L, et al. Optimal voltage and treatment time of electric field with assistant Solanum nigrum L. cadmium hyperaccumulation in soil[J]. Chemosphere, 2020, 253: 126575. doi: 10.1016/j.chemosphere.2020.126575
|
[28] |
BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2010, 83(3): 318-326.
|
[29] |
聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆: 重庆大学, 2015.
|
[30] |
那日, 冯璐. 我国静电生物学效应机理研究新进展[J]. 物理, 2003(2): 87-93.
|
[31] |
卢守波. 微电场—人工湿地耦合系统处理重金属废水初探[D]. 上海: 东华大学, 2011.
|
[32] |
LEE S, OH M M. Electric Stimulation Promotes Growth, Mineral Uptake, and Antioxidant Accumulation in Kale (Brassica oleracea var. acephala)[J]. Bioelectrochemistry, 2020, 138: 107727.
|
[33] |
SCOPA A, COLACINO C, BARONE LUMAGA M R, et al. Effects of a weak DC electric field on root growth in Arundo donax (Poaceae)[J]. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 2009, 59(5): 481-484.
|
[34] |
王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22): 4323-4341. doi: 10.3864/j.issn.0578-1752.2016.22.006
|
[35] |
LUO J, CAI L, QI S, et al. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation[J]. Ecotoxicology and Environmental Safety, 2018, 149: 241-247. doi: 10.1016/j.ecoenv.2017.12.005
|
[36] |
CAMESELLE C, REDDY K R. Development and enhancement of electro-osmotic flow for the removal of contaminants from soils[J]. Electrochimica Acta, 2012, 86: 10-22. doi: 10.1016/j.electacta.2012.06.121
|
[37] |
KUBIAK J J, KHANKHANE P J, KLEINGELD P J, et al. An attempt to electrically enhance phytoremediation of arsenic contaminated water[J]. Chemosphere, 2012, 87(3): 259-264. doi: 10.1016/j.chemosphere.2011.12.048
|
[38] |
ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants[J]. Journal of environmental science and health. Part A, Toxic/hazardous substances and environmental engineering, 2008, 43(8): 926-933.
|
[39] |
陈绩, 姚桂华, 倪幸, 等. 交流电场联合有机物料强化东南景天修复重金属镉污染土壤[J]. 环境工程学报, 2019, 13(11): 2682-2690.
|
[40] |
罗茂. 施加低压电场对苜蓿-丛枝菌共生及镉耐受性的影响[D]. 绵阳: 西南科技大学, 2022.
|