[1] |
KEITH L, TELLIARD W. ES&T special report: Priority pollutants: I-a perspective view[J]. Environmental Science & Technology, 1979, 13(4): 416-423.
|
[2] |
USEPA. Water quality criteria summary. Ecological risk assessment branch (WH-585) and human risk assessment branch (WH-550D) [R]. Washington DC, USA: Health and Ecological Criteria Division, 1991.
|
[3] |
PAPAZI A, KARAMANLI M, KOTZABASIS K. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus-the biodegradation strategy of microalgae[J]. Journal of Biotechnology, 2019, 296: 61-68. doi: 10.1016/j.jbiotec.2019.03.010
|
[4] |
PERA-TITUS M, GARCı́A-MOLINA V, BAÑOS M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: A general review[J]. Applied Catalysis B: Environmental, 2004, 47(4): 219-256. doi: 10.1016/j.apcatb.2003.09.010
|
[5] |
AHLBORG U G, THUNBERG T M. Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact[J]. Critical Reviews in Toxicology, 1980, 7(1): 1-35. doi: 10.3109/10408448009017934
|
[6] |
OLANIRAN A O, IGBINOSA E O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes[J]. Chemosphere, 2011, 83(10): 1297-1306. doi: 10.1016/j.chemosphere.2011.04.009
|
[7] |
de OLIVEIRA J C A, RODRIGUES P R M, de LUCENA S M P. Prediction of chlorophenols adsorption on activated carbons by representative pores method[J]. Environmental Science and Pollution Research, 2022, 29(53): 79866-79874. doi: 10.1007/s11356-022-18571-x
|
[8] |
CHO Y C, HSU C C, LIN Y P. Integration of in situ chemical oxidation and permeable reactive barrier for the removal of chlorophenols by copper oxide activated peroxydisulfate[J]. Journal of Hazardous Materials, 2022, 432: 128726. doi: 10.1016/j.jhazmat.2022.128726
|
[9] |
SARAVANAN A, KUMAR P S, VO D V N, et al. Photocatalysis for removal of environmental pollutants and fuel production: A review[J]. Environmental Chemistry Letters, 2021, 19(1): 441-463. doi: 10.1007/s10311-020-01077-8
|
[10] |
ZADA A, KHAN M, KHAN M A, et al. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts[J]. Environmental Research, 2021, 195: 110742. doi: 10.1016/j.envres.2021.110742
|
[11] |
CHEN X Q, BAI C H, LI Z L, et al. Directional bioelectrochemical dechlorination of trichloroethene to valuable ethylene by introduction poly-3-hydroxybutyrate as a slow release carbon source[J]. Chemical Engineering Journal, 2023, 455: 140737. doi: 10.1016/j.cej.2022.140737
|
[12] |
SHEN Y, ZHU C, SONG S, et al. Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water[J]. Environmental Science & Technology, 2019, 53(15): 9091-9101.
|
[13] |
QIAN Z F, WANG Z J, ZHANG K A I. Covalent triazine frameworks as emerging heterogeneous photocatalysts[J]. Chemistry of Materials, 2021, 33(6): 1909-1926. doi: 10.1021/acs.chemmater.0c04348
|
[14] |
SUN M, HAN S, FENG J J, et al. Recent advances of triazine-based materials for adsorbent based extraction techniques[J]. Topics in Current Chemistry, 2021, 379(4): 24. doi: 10.1007/s41061-021-00336-8
|
[15] |
ZENG T, JIN S J, LI S Q, et al. Covalent triazine frameworks with defective accumulation sites: Exceptionally modulated electronic structure for solar-driven oxidative activation of peroxymonosulfate[J]. Environmental Science & Technology, 2022, 56(13): 9474-9485.
|
[16] |
KUECKEN S, ACHARJYA A, ZHI L J, et al. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution[J]. Chemical Communications, 2017, 53(43): 5854-5857. doi: 10.1039/C7CC01827D
|
[17] |
ZHU C, FANG Q L, LIU R L, et al. Insights into the crucial role of electron and spin structures in heteroatom-doped covalent triazine frameworks for removing organic micropollutants[J]. Environmental Science & Technology, 2022, 56(10): 6699-6709.
|
[18] |
HUANG L M, WANG D K, ZENG H H, et al. Synergistically interactive P-Co-N bonding states in cobalt phosphide-decorated covalent organic frameworks for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2022, 14(48): 18209-18216. doi: 10.1039/D2NR05076E
|
[19] |
GARBA Z N, ZHOU W M, LAWAN I, et al. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review[J]. Journal of Environmental Management, 2019, 241: 59-75.
|
[20] |
SAPUTRA E, PRAWIRANEGARA B A, SUGESTI H, et al. Covalent triazine framework: Water treatment application[J]. Journal of Water Process Engineering, 2022, 48: 102874. doi: 10.1016/j.jwpe.2022.102874
|
[21] |
李鸿渐, 季秋忆, 朱诺亚, 等. 可见光下竹叶生物炭掺杂BiOBrxCl1-x光催化降解罗丹明B[J]. 环境化学, 2022, 41(10): 3390-3398. doi: 10.7524/j.issn.0254-6108.2021060801
LI H J, JI Q Y, ZHU N Y, et al. Photocatalytic degradation of rhodamine B by bamboo leaf biochar doped with BiOBrxCl1-x under visible light[J]. Environmental Chemistry, 2022, 41(10): 3390-3398 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021060801
|
[22] |
CABEZUELO O, MARTINEZ-HAYA R, MONTES N, et al. Heterogeneous riboflavin-based photocatalyst for pollutant oxidation through electron transfer processes[J]. Applied Catalysis B: Environmental, 2021, 298: 120497. doi: 10.1016/j.apcatb.2021.120497
|