[1] PARSONS C, STUEKEN E E, ROSEN C J, et al. Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history[J]. Geobiology, 2021, 19(1): 18-34. doi: 10.1111/gbi.12419
[2] AHMED S F, KUMAR P S, KABIR M, et al. Threats, challenges and sustainable conservation strategies for freshwater biodiversity[J]. Environment Research, 2022, 214(1): 113808.
[3] YE Y, NGO H H, GUO W, et al. Impacts of hydraulic retention time on a continuous flow mode dual-chamber microbial fuel cell for recovering nutrients from municipal wastewater[J]. Science of the Total Environment, 2020, 734: 139220. doi: 10.1016/j.scitotenv.2020.139220
[4] ASAI Y, MIYAHARA M, KOUZUMA A, et al. Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation[J]. Bioresources and Bioprocessing, 2017, 4(1): 30. doi: 10.1186/s40643-017-0163-7
[5] YANG N, ZHAN G, LI D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. doi: 10.1016/j.cej.2018.08.161
[6] JIN X, YANG N, LIU H, et al. Membrane penetration of nitrogen and its effects on nitrogen removal in dual-chambered microbial fuel cells[J]. Chemosphere, 2022, 297: 134038. doi: 10.1016/j.chemosphere.2022.134038
[7] NGUYEN H D, BABEL S. A novel coupled microbial fuel cell operation for organic and nitrogen removal with simultaneous energy recovery from wastewater[J]. Sustainable Energy Technologies and Assessments, 2023, 55:102981.
[8] 王佳琪, 付国楷, 黄梓良, 等. 碳氮比对高盐废水单室MFCs产电、污染物去除及微生物群落结构的影响[J]. 环境工程学报, 2021, 15(4): 1354-1366. doi: 10.12030/j.cjee.202009094
[9] HUANG G, ZHANG Y, QU L, et al. Denitrification performance of ce-doped birnessite modified cathode in bioelectrochemical system[J]. Journal of Electroanalytical Chemistry, 2020, 871:114313.
[10] PUIG S, SERRA M, VILAR-SANZ A, et al. Autotrophic nitrite removal in the cathode of microbial fuel cells[J]. Bioresource Technology, 2011, 102(6): 4462-4467. doi: 10.1016/j.biortech.2010.12.100
[11] CLAUWAERT P R K, AELTERMAN P. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3354-3360.
[12] DING A, ZHAO D, DING F, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering Journal, 2018, 343: 399-407. doi: 10.1016/j.cej.2018.02.119
[13] VIRDIS B, RABAEY K, YUAN Z, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water Research, 2008, 42(12): 3013-3024. doi: 10.1016/j.watres.2008.03.017
[14] VIRDIS B, RABAEY K, ROZENDAL R A, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research, 2010, 44(9): 2970-2980. doi: 10.1016/j.watres.2010.02.022
[15] ZHANG L, FU G, ZHANG Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community[J]. Bioresource Technology, 2020, 313: 123660. doi: 10.1016/j.biortech.2020.123660
[16] ZHANG Y, XU Q, HUANG G, et al. Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34099-34109. doi: 10.1016/j.ijhydene.2020.09.110
[17] 黄丽巧, 易筱筠, 韦朝海, 等. 阴极硝化耦合阳极反硝化实现微生物燃料电池技术脱氮[J]. 环境工程学报, 2015, 9(10): 5118-5124. doi: 10.12030/j.cjee.20151081
[18] R L B E H B R. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40: 5181-5192.
[19] YI T, HARPER W F. The effect of nitrate and sulfate on mediator-less microbial fuel cells with high internal resistance[J]. Water Environment Research, 2009, 81(11): 2320-2328. doi: 10.2175/106143009X407267
[20] 张吉强, 郑平, 何崭飞. 废水中硝氮和 COD 浓度对 AD-MFC 脱氮产电性能的影响[J]. 环境工程学报, 2014, 8(10): 4508-4514.
[21] VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresource Technology, 2011, 102(1): 334-341. doi: 10.1016/j.biortech.2010.06.155
[22] DI LORENZO M, CURTIS T P, HEAD I M, et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J]. Water Research, 2009, 43(13): 3145-3154. doi: 10.1016/j.watres.2009.01.005
[23] JIN X, GUO F, MA W, et al. Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells[J]. Chemical Engineering Journal, 2019, 370: 527-535. doi: 10.1016/j.cej.2019.03.023
[24] ZHANG L, FU G, ZHANG Z. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 289: 121630. doi: 10.1016/j.biortech.2019.121630
[25] HUANG H, CHENG S, YANG J, et al. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells[J]. Chemical Engineering Journal, 2018, 337: 661-670. doi: 10.1016/j.cej.2017.12.150
[26] ZHANG L, FU G, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012
[27] ROZENDAL R A H H V M, BUISMAN C J N. Effects of membrane cation transport on pH and microbial fuel cell[J]. Environmental Science & Technology, 2006, 40(17): 5206-5211.
[28] KUNTKE P, SMIECH K M, BRUNING H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8): 2627-2636. doi: 10.1016/j.watres.2012.02.025
[29] FENG C, HUANG L, YU H, et al. Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology[J]. Water Research, 2015, 76: 160-170. doi: 10.1016/j.watres.2015.03.001
[30] TAO Q, LUO J, ZHOU J, et al. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell[J]. Bioresource Technology, 2014, 164: 402-407. doi: 10.1016/j.biortech.2014.05.002
[31] CHEN C, SUN F, ZHANG H, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578. doi: 10.1016/j.biortech.2016.05.115
[32] PARK W, NAM Y K, LEE M J, et al. Simultaneous nitrification and denitrification in a CEM (cation exchange membrane)-bounded two chamber system[J]. Water Research, 2009, 43(15): 3820-3826. doi: 10.1016/j.watres.2009.05.039
[33] ZHANG Y, ANGELIDAKI I. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes[J]. Water Research, 2012, 46(19): 6445-6453. doi: 10.1016/j.watres.2012.09.022
[34] 臧华生, 周新国, 李会贞, 等. pH值和碳氮比对微生物燃料电池脱氮除磷效果的影响[J]. 灌溉排水学报, 2019, 38(2): 49-55. doi: 10.13522/j.cnki.ggps.20180084