[1] CARMICHAEL L M, CHRISTMAN R F, PFAENDER F K. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils[J]. Environmental Science & Technology, 1997, 31(1): 126-132.
[2] WILD S R, JONES K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget[J]. Environmental Pollution, 1995, 88(1): 91-108. doi: 10.1016/0269-7491(95)91052-M
[3] OCKENDEN W A, BREIVIK K, MEIJER S N, et al. The global re-cycling of persistent organic pollutants is strongly retarded by soils[J]. Environmental Pollution, 2003, 121(1): 75-80. doi: 10.1016/S0269-7491(02)00204-X
[4] 杜佩轩, 田晖, 韩永明. 城市灰尘概念、研究内容与方法[J]. 陕西地质, 2004, 22(1): 73-79. doi: 10.3969/j.issn.1001-6996.2004.01.011 DU P X, TIAN H, HAN Y M. Concept, research content and method of urban dust[J]. Geology of Shaanxi, 2004, 22(1): 73-79 (in Chinese). doi: 10.3969/j.issn.1001-6996.2004.01.011
[5] YU Y X, YANG D, WANG X X, et al. Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters[J]. Chemosphere, 2013, 93(10): 2603-2611. doi: 10.1016/j.chemosphere.2013.09.085
[6] YAMAMOTO N, TAKAHASHI Y, YOSHINAGA J, et al. Size distributions of soil particles adhered to children’s hands[J]. Archives of Environmental Contamination and Toxicology, 2006, 51(2): 157-163. doi: 10.1007/s00244-005-7012-y
[7] 王子淳, 倪进治, 陈卫锋, 等. 福州市街道灰尘粒径组分中多环芳烃的分配及健康风险评估[J]. 亚热带资源与环境学报, 2022, 17(2): 52-59. doi: 10.3969/j.issn.1673-7105.2022.02.009 WANG Z C, NI J Z, CHEN W F, et al. Distribution and health risk assessment of polycyclic aromatic hydrocarbons in particle-size fractions of street dust in Fuzhou city[J]. Journal of Subtropical Resources and Environment, 2022, 17(2): 52-59 (in Chinese). doi: 10.3969/j.issn.1673-7105.2022.02.009
[8] 李新荣, 李本纲, 陶澍, 等. 天津地区人群对多环芳烃的暴露[J]. 环境科学学报, 2005, 25(7): 989-993. doi: 10.3321/j.issn:0253-2468.2005.07.023 LI X R, LI B G, TAO S, et al. Population exposure to PAHs in Tianjin area[J]. Acta Scientiae Circumstantiae, 2005, 25(7): 989-993 (in Chinese). doi: 10.3321/j.issn:0253-2468.2005.07.023
[9] DEHGHANI S, MOORE F, VASILUK L, et al. The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils[J]. Environmental Geochemistry and Health, 2018, 40(3): 1155-1174. doi: 10.1007/s10653-017-9994-6
[10] LI X P, GAO Y, ZHANG M, et al. In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110151. doi: 10.1016/j.ecoenv.2019.110151
[11] OOMEN A G, ROMPELBERG C J M, BRUIL M A, et al. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants[J]. Archives of Environmental Contamination and Toxicology, 2003, 44(3): 281-287. doi: 10.1007/s00244-002-1278-0
[12] OOMEN A G, HACK A, MINEKUS M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15): 3326-3334.
[13] ZHANG Y Y, PIGNATELLO J J, TAO S, et al. Bioacessibility of PAHs in fuel soot assessed by an in vitro digestive model: Effect of including an absorptive sink[J]. Environmental Science & Technology, 2015, 49(6): 3905-3912.
[14] 张迪宇, 吕艳, 赛道建, 等. 残渣吸着对消化道中土壤多环芳烃生物可给性体外测定的影响[J]. 环境化学, 2009, 28(4): 524-529. ZHANG D Y, LU Y, SAI D J, et al. Effect of sorption on the bioaccessibility of polycyclica romatic hydrocarbons in soil measured by in-vitro test[J]. Environmental Chemistry, 2009, 28(4): 524-529 (in Chinese).
[15] LORENZI D, ENTWISTLE J A, CAVE M, et al. Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health[J]. Chemosphere, 2011, 83(7): 970-977. doi: 10.1016/j.chemosphere.2011.02.020
[16] NI J Z, LUO Y M, WEI R, et al. Distribution of polycyclic aromatic hydrocarbons in particle-size separates and density fractions of typical agricultural soils in the Yangtze River Delta, East China[J]. European Journal of Soil Science, 2008, 59(6): 1020-1026. doi: 10.1111/j.1365-2389.2008.01066.x
[17] 倪进治, 王军, 李小燕, 等. 超高效液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室, 2010, 29(5): 25-28. doi: 10.13595/j.cnki.issn1000-0720.2010.0132 NI J Z, WANG J, LI X Y, et al. Determination of polycyclic aromatic hydrocarbons in soil by ultra performance liquid chromatography with a fluorescence detector[J]. Chinese Journal of Analysis Laboratory, 2010, 29(5): 25-28 (in Chinese). doi: 10.13595/j.cnki.issn1000-0720.2010.0132
[18] 李章平, 陈玉成, 杨学春, 等. 重庆市主城区街道地表物中重金属的污染特征[J]. 水土保持学报, 2006, 20(1): 114-116, 138. doi: 10.3321/j.issn:1009-2242.2006.01.028 LI Z P, CHEN Y C, YANG X C, et al. Heavy metals contamination of street dusts in core zone of Chongqing municipality[J]. Journal of Soil and Water Conservation, 2006, 20(1): 114-116, 138 (in Chinese). doi: 10.3321/j.issn:1009-2242.2006.01.028
[19] NISBET I C T, LaGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X
[20] MASCLET P, MOUVIER G, NIKOLAOU K. Relative decay index and sources of polycyclic aromatic hydrocarbons[J]. Atmospheric Environment (1967), 1986, 20(3): 439-446. doi: 10.1016/0004-6981(86)90083-1
[21] HA S Y, KIM G B, YIM U H, et al. Particle-size distribution of polycyclic aromatic hydrocarbons in urban road dust of Masan, Korea[J]. Archives of Environmental Contamination and Toxicology, 2012, 63(2): 189-198. doi: 10.1007/s00244-012-9765-4
[22] DONG T T T, LEE B K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea[J]. Chemosphere, 2009, 74(9): 1245-1253. doi: 10.1016/j.chemosphere.2008.11.035
[23] WANG C K, LI Y X, LIU J L, et al. Characteristics of PAHs adsorbed on street dust and the correlation with specific surface area and TOC[J]. Environmental Monitoring and Assessment, 2010, 169(1): 661-670.
[24] ZHEN X L, LIU G, LI J H, et al. PAHs in road dust of Nanjing Chemical Industry Park, China: Chemical composition, sources, and risk assessment[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(1): 33-43.
[25] 钟名誉, 陈卓, 贾晓洋, 等. 焦化污染土壤有机质不同组分中多环芳烃分布及其生物有效性分析[J]. 环境科学学报, 2021, 41(8): 3349-3358. doi: 10.13671/j.hjkxxb.2020.0570 ZHONG M Y, CHEN Z, JIA X Y, et al. The analysis in distribution and bioavailability of polycyclic aromatic hydrocarbons in organic matter components of coking contaminated soil[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3349-3358 (in Chinese). doi: 10.13671/j.hjkxxb.2020.0570
[26] LIU R Y, HE R W, CUI X Y, et al. Impact of particle size on distribution, bioaccessibility, and cytotoxicity of polycyclic aromatic hydrocarbons in indoor dust[J]. Journal of Hazardous Materials, 2018, 357: 341-347. doi: 10.1016/j.jhazmat.2018.05.058
[27] BORIS N W, HAGINO O R, STEINER G P. Case study: Hypersomnolence and precocious puberty in a child with Pica and chronic lead intoxication[J]. Journal of the American Academy of Child & Adolescent Psychiatry, 1996, 35(8): 1050-1054.
[28] LEE B K, DONG T T T. Effects of road characteristics on distribution and toxicity of polycyclic aromatic hydrocarbons in urban road dust of Ulsan, Korea[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 540-550.