[1] 任辉, 刘敏, 王自国, 等. 我国锰矿资源及产业链安全保障问题研究[J]. 中国工程科学, 2022, 24(3): 20-28.
[2] 张雅静. 中国锰矿行业安全环保新政下优劣势分析与发展路径研究[J]. 中国锰业, 2022, 40(6): 21-25.
[3] WANG J, CHENG Q, XUE S, et al. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland[J]. Environmental Science and Pollution Research, 2018, 25: 9998-10005. doi: 10.1007/s11356-018-1338-2
[4] LI Z, MA Z, KUIJP T J V D, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090
[5] 王庆仁, 崔岩山, 董艺婷. 植物修复-重金属污染土壤整治有效途径[J]. 生态学报, 2001, 21(2): 326-331. doi: 10.3321/j.issn:1000-0933.2001.02.024
[6] CHANEY R L, LI Y M, BROWN S L, et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress[J]. Phytoremediation of Contaminated Soil and Water. CRC Press, 1999: 129-158.
[7] 张慧智, 刘云国, 黄宝荣, 等. 锰矿尾渣污染土壤上植物受重金属污染状况调查[J]. 生态学杂志, 2004, 23(1): 111-113.
[8] 李有志, 罗佳, 张灿明, 等. 湘潭锰矿区植物资源调查及超富集植物筛选[J]. 生态学杂志, 2012, 31(1): 16-22.
[9] 李礼, 刘灿, 徐龙君. 重庆秀山锰矿废弃地优势种植物调查分析[J]. 湖南生态科学学报, 2017, 4(3): 19-25. doi: 10.3969/j.issn.2095-7300.2017.03-019
[10] 何蔚. 锰矿渣基质改良下木本植物修复效果研究[D]. 长沙: 中南林业科技大学, 2018.
[11] 潘淑桢, 唐敏, 谭欣蕊, 等. 2种常见园林灌木对Zn的富集及耐性机制研究[J]. 环境科学与技术, 2022, 45(4): 154-163.
[12] 商侃侃, 张国威, 蒋云. 54种木本植物对土壤Cu、Pb、Zn的提取能力[J]. 生态学杂志, 2019, 38(12): 3723-3730. doi: 10.13292/j.1000-4890.201912.006
[13] 周连碧. 铜尾矿废弃地重金属污染特征与生态修复研究[D]. 北京: 中国矿业大学(北京), 2012.
[14] LI M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice[J]. Science of the Total Environment, 2006, 357(1): 38-53.
[15] 何蔚, 陈永华, 梁希, 等. 改良锰矿渣中木本植物筛选及锰的亚细胞分布和化学形态[J]. 环境工程, 2018, 36(9): 154-160.
[16] ZHANG M Y, CHEN Y H, DU L, et al. The potential of Paulownia fortunei seedlings for the phytoremediation of manganese slag amended with spent mushroom compost[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110538. doi: 10.1016/j.ecoenv.2020.110538
[17] TANG C F, CHEN Y H, ZHANG Q N, et al. Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals[J]. Ecotoxicology and Environmental Safety, 2019, 176: 42-49. doi: 10.1016/j.ecoenv.2019.03.078
[18] 谢天志, 陈永华, 苏荣葵, 等. 改良铅锌矿渣对栾树幼苗铅锌富集与耐性机制[J]. 环境科学, 2022, 43(10): 4687-4696.
[19] HENAO S-G, GHNEIM-HERRERA T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome[J]. Frontiers in Environmental Science, 2021, 9: 604216. doi: 10.3389/fenvs.2021.604216
[20] YIN K, WANG Q, LV M, et al. Microorganism remediation strategies towards heavy metals[J]. Chemical Engineering Journal, 2019, 360: 1553-1563. doi: 10.1016/j.cej.2018.10.226
[21] ABDU N, ABDULLAHI A A, ABDULKADIR A. Heavy metals and soil microbes[J]. Environmental chemistry letters, 2017, 15: 65-84. doi: 10.1007/s10311-016-0587-x
[22] 关松荫, 张德生, 张志明, 等. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.
[23] SWATHI A T, RAKESH M, PREMSAI S B, et al. Chronic N -amended soils exhibit an altered bacterial community structure in harvard forest, Ma, Usa[J]. FEMS Microbiology Ecology, 2013, 83(2): 478-493. doi: 10.1111/1574-6941.12009
[24] 周柳婷, 李建鹃, 赵艳琳, 等. 基于高通量测序的连栽木麻黄根际土壤细菌群落变化研究[J]. 生态学报, 2020, 40(8): 2670-2679.
[25] 宋秀丽, 黄瑞龙, 柯彩杰, 等. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496.
[26] 欧阳林男. 锰矿污染区植物群落模式修复效应研究[D]. 长沙: 中南林业科技大学, 2017
[27] HAN J, XU Y, LIANG X, et al. Sorption stability and mechanism exploration of palygorskite as immobilization agent for Cd in polluted soil[J]. Water, Air and Soil Pollution, 2014, 225(10): 1-13.
[28] 吴瑾. 锰矿渣的改良剂筛选与改良效果研究[D]. 长沙: 中南林业科技大学, 2019
[29] 解雪峰, 濮励杰, 朱明, 等. 基于MDS与TOPSIS模型的滨海滩涂围垦区土壤质量评价[J]. 环境科学, 2019, 40(12): 5484-5492.
[30] 陶玲, 马奔, 李中兴, 等. 污泥-凹凸棒石共热解生物炭对矿区重金属污染土壤的钝化修复效果研究[J]. 农业环境科学学报, 2022, 41(6): 1251-1260.
[31] XU C, QI J, YANG W, et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J]. Science of the Total Environment, 2019, 686: 476-483. doi: 10.1016/j.scitotenv.2019.05.330
[32] 欧阳林男, 吴晓芙, 李芸, 等. 锰矿修复区泡桐与栾树生长与重金属积累特性[J]. 中国环境科学, 2016, 36(3): 908-916.
[33] 林淑芬, 李辉信, 胡锋. 蚓粪对黑麦草吸收污染土壤重金属铜的影响[J]. 土壤学报, 2006, 43(6): 911-918.
[34] MUTHANNA T M, VIKLANDER M, GJESDAHL N, et al. Heavy metal removal in cold climate bioretention[J]. Water, Air, and Soil Pollution, 2007, 183(1): 391-402.
[35] NAIDU R, BOLAN N S, KOOKANA R S, et al. Ionic‐strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. European journal of soil science, 1994, 45(4): 419-429. doi: 10.1111/j.1365-2389.1994.tb00527.x
[36] YUANPENG W, JIYAN S, HUI W, et al. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 75-81. doi: 10.1016/j.ecoenv.2006.03.007
[37] KANDELER F, KAMPICHLER C, HORAK O. Influence of heavy metals on the functional diversity of soil microbial communities[J]. Biology and Fertility of Soils, 1996, 23(3): 299-306. doi: 10.1007/BF00335958
[38] 张秀, 尚艺婕, 王海波, 等. 重金属污染条件下生物质炭对土壤微生物群落结构及多样性影响的研究进展[J]. 中国农学通报, 2016, 32(25): 147-152. doi: 10.11924/j.issn.1000-6850.casb16010082
[39] BOUSKILL N J, BARKER-FINKEL J, GALLOWAY T S, et al. Temporal bacterial diversity associated with metal-contaminated river sediments[J]. Ecotoxicology, 2010, 19: 317-328. doi: 10.1007/s10646-009-0414-2
[40] MARCIN G, EDYTA D, MARCIN C, et al. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils.[J]. Microbial Ecology, 2014, 67(3): 635-647. doi: 10.1007/s00248-013-0344-7
[41] SHEN C, XIONG J, ZHANG H, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57: 204-211. doi: 10.1016/j.soilbio.2012.07.013
[42] BARNS S M, CAIN E C, Sommerville L, et al. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Applied & Environmental Microbiology, 2007, 73(9): 3113-3116.
[43] 陈丹梅, 段玉琪, 杨宇虹, 等. 轮作模式对植烟土壤酶活性及真菌群落的影响[J]. 生态学报, 2016, 36(8): 2373-2381.
[44] FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. doi: 10.1016/j.foreco.2004.03.018
[45] 葛勉慎, 周海宾, 沈玉君, 等. 添加剂对牛粪堆肥不同阶段真菌群落演替的影响[J]. 中国环境科学, 2019, 39(12): 5173-5181. doi: 10.19674/j.cnki.issn1000-6923.2019.0601
[46] 徐一兰, 唐海明, 李益锋, 等. 长期施肥大麦生育期双季稻田土壤微生物和酶活性动态变化特征[J]. 中国农学通报, 2017, 33(13): 12-20.
[47] 张薇, 魏海雷, 高洪文, 等. 土壤微生物多样性及其环境影响因子研究进展[J]. 生态学杂志, 2005, 24(1): 48-52. doi: 10.13292/j.1000-4890.2005.0208