[1] |
ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
|
[2] |
樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736. doi: 10.3969/j.issn.1674-5906.2013.10.015
|
[3] |
KHAOKAEW S, LANDROT G. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants[J]. Chemosphere, 2015, 138: 883-887. doi: 10.1016/j.chemosphere.2014.09.108
|
[4] |
HAMADOUCHE N A, AOUMEUR H, DJEDIAI S, et al. Phytoremediation potential of Raphanus sativus L. for lead contaminated soil[J]. Acta Biologica Szegediensis, 2012, 56(1): 43-49.
|
[5] |
徐一芃, 黄益宗, 张利田, 等. 镉砷污染土壤修复技术的文献计量分析[J]. 环境工程学报, 2020, 14(10): 2882-2894. doi: 10.12030/j.cjee.201910125
|
[6] |
李熠, 陈熹, 肖丕显, 等. 中国镉超富集植物种类组成及分布特征研究[J]. 中国野生植物资源, 2020, 39(6): 11-16.
|
[7] |
吴龙华, 周守标, 毕德, 等. 中国景天科植物一新种——伴矿景天[J]. 土壤, 2006, 38(5): 632-633. doi: 10.3321/j.issn:0253-9829.2006.05.022
|
[8] |
熊娟, 王依涵, 陈畅, 等. 伴矿景天修复农田土壤镉污染的研究进展[J]. 农业环境科学学报, 2022, 41(3): 441-454. doi: 10.11654/jaes.2021-0909
|
[9] |
WU L, LI Z, AKAHANE I, et al. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola[J]. International Journal of Phytoremediation, 2012, 14(10): 1024-1038. doi: 10.1080/15226514.2011.649436
|
[10] |
WEI S, ZHOU Q, WANG X, et al. A newly-discovered Cd-hyperaccumulator Solatium nigrum L[J]. Chinese Science Bulletin, 2005, 50(1): 33-38. doi: 10.1360/982004-292
|
[11] |
YANG W, DAI H, SKUZA L, et al. The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2020, 393: 122482. doi: 10.1016/j.jhazmat.2020.122482
|
[12] |
李旭, 晁赢, 阎祥慧, 等. 植物修复技术治理农田土壤重金属污染的研究进展[J]. 河南农业科学, 2022, 51(12): 10-18.
|
[13] |
张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L. )对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16): 5805-5813.
|
[14] |
汪洁, 龚竞, 刘雨佳, 等. 昆明市土壤重金属污染特征及其生态与健康风险评价[J]. 轻工学报, 2022, 37(4): 118-126.
|
[15] |
赵家印, 席运官, 代慧杰, 等. 钝化剂与有机肥配施对土壤有效态重金属及其在生菜中累积的影响[J]. 生态与农村环境学报, 2019, 35(11): 1460-1467.
|
[16] |
杨育文, 陈秋会, 席运官, 等. 不同施肥模式对酸性土壤镉、铜有效态含量及在结球生菜中累积的影响[J]. 云南农业大学学报(自然科学), 2022, 37(2): 344-350.
|
[17] |
李颖慧, 姜小三, 王振华, 等. 基于土壤肥力和重金属污染风险的农用地土壤质量综合评价研究-以山东省博兴县为例[J]. 土壤通报, 2021, 52(5): 1052-1062.
|
[18] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
|
[19] |
周晓声, 娄厦, RADNAEVA L D, 等. 植物对土壤重金属富集特性研究进展[J]. 生态毒理学报, 2022, 17(3): 400-410.
|
[20] |
俞花美, 焦鹏, 葛成军, 等. 施肥措施对重金属污染土壤-植物系统影响的研究进展[J]. 热带农业科学, 2012, 32(2): 61-66.
|
[21] |
徐明岗, 曾希柏, 周世伟, 等著. 施肥与土壤重金属污染修复[M]. 北京: 科学出版社, 2014.
|
[22] |
赵雅曼, 陈顺钰, 李宗勋, 等. 铅锌矿集区7种草本植物对重金属的富集效果[J]. 森林与环境学报, 2019, 39(3): 232-240.
|
[23] |
向明文, 王丹, 姚天月, 等. 8种植物对铀和镉的富集特性[J]. 环境工程学报, 2017, 11(1): 594-601. doi: 10.12030/j.cjee.201606213
|
[24] |
LIN L, JIN Q, LIU Y, et al. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method[J]. Environmental Toxicology and Chemistry, 2014, 33(11): 2422-2428. doi: 10.1002/etc.2694
|
[25] |
曹玉桃, 彭晓辉, 雷青, 等. 两种生态型富集植物及超富集植物的镉积累特性差异研究[J]. 陕西农业科学, 2015, 61(11): 61-65. doi: 10.3969/j.issn.0488-5368.2015.11.019
|
[26] |
陈迪, 李伯群, 杨永平, 等. 4种草本植物对镉的富集特征[J]. 环境科学, 2021, 42(2): 960-966. doi: 10.13227/j.hjkx.202007034
|
[27] |
戴悦, 范占煌, 段清明, 等. 草本植物修复重金属污染土壤研究进展[J/OL]. 分子植物育种: 1-9[2023-06-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20221007.1452.002.html.
|
[28] |
王晶晶, 吝美霞, 赵琦慧, 等. 冻融作用对石油烃与镉复合污染土壤修复植物生理特性的影响[J]. 应用技术学报, 2022, 22(1): 76-82. doi: 10.3969/j.issn.2096-3424.2022.01.010
|
[29] |
黄科文, 姚欢, 马倩倩, 等. 相互嫁接对两种生态型牛膝菊后代生长及镉积累的影响[J]. 中国土壤与肥料, 2020, 289(5): 207-212. doi: 10.11838/sfsc.1673-6257.19399
|