[1] |
ULLAH H, NAGELKERKEN I, GOLDENBERG S U, et al. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation[J]. PLoS biology, 2018, 16(1): e2003446. doi: 10.1371/journal.pbio.2003446
|
[2] |
RAVEN J A, GOBLER C J, HANSEN P J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms[J]. Harmful Algae, 2020, 91: 101594. doi: 10.1016/j.hal.2019.03.012
|
[3] |
HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8): 471-483. doi: 10.1038/s41579-018-0040-1
|
[4] |
MOUSTAKA-GOUNI M, SOMMER U. Effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs[J]. Water, 2020, 12(6): 1587. doi: 10.3390/w12061587
|
[5] |
KARLSON B, ANDERSEN P, ARNEBORG L, et al. Harmful algal blooms and their effects in coastal seas of Northern Europe[J]. Harmful algae, 2021, 102: 101989. doi: 10.1016/j.hal.2021.101989
|
[6] |
YU R, LU S, QI Y, et al. Progress and perspectives of harmful algal bloom studies in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 768-788.
|
[7] |
COYNE K J, WANG Y F, JOHNSON G. Algicidal bacteria: a review of current knowledge and applications to control harmful algal blooms[J]. Frontiers in Microbiology, 2022, 13: 871177. doi: 10.3389/fmicb.2022.871177
|
[8] |
CRUMP B C, WOJAHN J M, TOMAS F, et al. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes[J]. Frontiers in Microbiology, 2018, 9: 388. doi: 10.3389/fmicb.2018.00388
|
[9] |
ZHANG P, ZHAI C M, CHEN R Q, et al. The dynamics of the water bloom-forming Microcystis aeruginosa and its relationship with biotic and abiotic factors in Lake Taihu, China[J]. Ecological Engineering, 2012, 47: 274-277. doi: 10.1016/j.ecoleng.2012.07.004
|
[10] |
LIN S Q, GENG M X, LIU X L, et al. On the control of Microcystis aeruginosa and Synechococccus species using an algicidal bacterium, Stenotrophomonas F6, and its algicidal compounds cyclo-(Gly-Pro) and hydroquinone[J]. Journal of Applied Phycology, 2016, 28(1): 345-355. doi: 10.1007/s10811-015-0549-x
|
[11] |
GUO X L, LIU X L, WU L S, et al. The algicidal activity of Aeromonas sp strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing[J]. Environmental Microbiology, 2016, 18(11): 3867-3883. doi: 10.1111/1462-2920.13346
|
[12] |
SEYEDSAYAMDOST M R, CASE R J, KOLTER R, et al. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis[J]. Nature chemistry, 2011, 3(4): 331-335. doi: 10.1038/nchem.1002
|
[13] |
QIXIN L, XUAN F, ZHIYA S, et al. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing[J]. Bioresource Technology, 2022, 354: 127161. doi: 10.1016/j.biortech.2022.127161
|
[14] |
WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research[J]. Nature, 2018, 555(7694): 126-126.
|
[15] |
EICKHOFF M J, BASSLER B L. Snapshot: bacterial quorum sensing[J]. Cell, 2018, 174(5): 1328-1328.e1. doi: 10.1016/j.cell.2018.08.003
|
[16] |
PAPENFORT K, BASSLER B L. Quorum sensing signal–response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9): 576-588. doi: 10.1038/nrmicro.2016.89
|
[17] |
LIU J, LEWITUS A J, KEMPTON J W, et al. The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds[J]. Harmful Algae, 2008, 7(2): 184-193. doi: 10.1016/j.hal.2007.07.001
|
[18] |
ZHOU L, ZHANG L H, CAMARA M, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover[J]. Trends in Microbiology, 2017, 25(4): 293-303. doi: 10.1016/j.tim.2016.11.013
|
[19] |
HUEDO P, YERO D, MARTINEZ-SERVAT S, et al. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia[J]. Frontiers in Microbiology, 2015, 6: 761.
|
[20] |
宋凯, 周莲, 何亚文. DSF-家族群体感应信号生物合成途径与调控机制研究进展[J]. 微生物学通报, 2021, 48(4): 1239-1248. doi: 10.13344/j.microbiol.china.200710
|
[21] |
ZHOU S, YIN H, TANG S, et al. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa[J]. Ecotoxicology and Environmental Safety, 2016, 127: 214-221. doi: 10.1016/j.ecoenv.2016.02.001
|
[22] |
阴盼晴. 海洋嗜麦芽寡养单胞菌JX14对锥状斯式藻抑藻机理的研究[D]. 兰州: 兰州理工大学, 2019.
|
[23] |
ZHANG Q, WANG Y, ZHOU J. Complete genome sequence of Stenotrophomonas Rhizophila kc1 a quorum sensing-producing algicidal bacterium isolated from Mangrove Kandelia candel[J]. Molecular Plant-Microbe Interactions, 2021, 34(7): 857-861. doi: 10.1094/MPMI-12-20-0346-A
|
[24] |
YIN P Q, ZHANG Q, ZHU J M, et al. The data of genomic and phenotypic profiles of the N-acyl homoserine lactone-producing algicidal bacterium Stenotrophomonas rhizophila GA1[J]. Data in Brief, 2018, 21: 966-971. doi: 10.1016/j.dib.2018.10.051
|
[25] |
ZENG G M, ZHOU J, HUANG T, et al. Extraction of chlorophyll-a from eutrophic water by repeated freezing and thawing-extraction method[J]. Asian Journal of Chemistry, 2014, 26(8): 2289-2292. doi: 10.14233/ajchem.2014.15700
|
[26] |
SEYMOUR J R, AMIN S A, RAINA J B, et al. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships[J]. Nature Microbiology, 2017, 2(7): 1-12.
|
[27] |
ROTH P B, TWINER M J, MIKULSKI C M, et al. Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate Karenia brevis[J]. Harmful Algae, 2008, 7(5): 682-691. doi: 10.1016/j.hal.2008.02.002
|
[28] |
YU Y, ZENG Y D, LI J, et al. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously[J]. Science of the Total Environment, 2019, 650: 34-43. doi: 10.1016/j.scitotenv.2018.08.433
|
[29] |
MEYER N, BIGALKE A, KAULFUSS A, et al. Strategies and ecological roles of algicidal bacteria[J]. Fems Microbiology Reviews, 2017, 41(6): 880-899. doi: 10.1093/femsre/fux029
|
[30] |
张嗣萍. 一株广谱性溶藻细菌的筛选鉴定、溶藻特性及溶藻机理的研究[D]. 重庆: 西南大学, 2018.
|
[31] |
ZHENG X W, ZHANG B Z, ZHANG J L, et al. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa[J]. Applied Microbiology and Biotechnology, 2013, 97(20): 9207-9215. doi: 10.1007/s00253-012-4617-8
|
[32] |
范德朋, 胡亚冬, 杨敏志, 等. 鱼腥藻藻华水体一株溶藻菌BWFA55的鉴定及溶藻特性[J]. 广东海洋大学学报, 2021, 41(6): 9-17. doi: 10.3969/j.issn.1673-9159.2021.06.002
|
[33] |
CHEN W, PAUL W, LEENHEER J A, et al. Fluorescence excitation - emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[34] |
JIAO N, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599. doi: 10.1038/nrmicro2386
|
[35] |
ZHAO X Y, ZHAO K, SUN P Q. A method to describe the shapes of UV-vis absorbance spectra during the aggregation process of conjugated polymer solutions quantitatively[J]. Chemical Physics Letters, 2019, 730: 582-586. doi: 10.1016/j.cplett.2019.06.030
|
[36] |
李岩岩, 赵娜, 马丽娟, 等. 土壤腐殖酸的紫外-可见光谱表征[J]. 大连民族学院学报, 2011, 13(5): 538-539. doi: 10.13744/j.cnki.cn21-1431/g4.2011.05.008
|
[37] |
SUN B, LI Y S, SONG M J, et al. Molecular characterization of the composition and transformation of dissolved organic matter during the semi-permeable membrane covered hyperthermophilic composting[J]. Journal of Hazardous Materials, 2022, 425: 127496. doi: 10.1016/j.jhazmat.2021.127496
|
[38] |
CHAVEZ-VERGARA B, MERINO A, VAZQUEZ-MARRUFO G, et al. Organic matter dynamics and microbial activity during decomposition of forest floor under two native neotropical oak species in a temperate deciduous forest in Mexico[J]. Geoderma, 2014, 235: 133-145.
|
[39] |
段漓童, 刘正猛. 红外光谱图的分区[J]. 华北煤炭医学院学报, 2006, 8(3): 336-337.
|
[40] |
张明洋, 朱兆龙, 李好好, 等. 不同傅里叶变换红外光谱法研究土壤光谱特征的比较与应用[J]. 水土保持研究, 2022, 29(6): 121-128. doi: 10.13869/j.cnki.rswc.20220414.006
|
[41] |
倪文海, 刘欢, 刘振涛, 等. 水稻秸杆腐解过程溶解性有机质红外光谱研究[J]. 土壤, 2013, 45(2): 1220-1226. doi: 10.3969/j.issn.0253-9829.2013.02.005
|
[42] |
KROL E, SCHAPER S, BECKER A. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia[J]. Biological Chemistry, 2020, 401(12): 1335-1348. doi: 10.1515/hsz-2020-0232
|
[43] |
LIU Y, GAO J, WANG N, et al. Diffusible signal factor enhances the saline-alkaline resistance and rhizosphere colonization of Stenotrophomonas rhizophila by coordinating optimal metabolism[J]. Science of the Total Environment, 2022, 834: 155403. doi: 10.1016/j.scitotenv.2022.155403
|
[44] |
司晓光, 张晓青, 郝建安, 等. 芽孢杆菌dhs-330-021对链状亚历山大藻的溶藻机理研究[J]. 生物技术通讯, 2017, 28(4): 485-489. doi: 10.3969/j.issn.1009-0002.2017.04.015
|
[45] |
卢露, 马金玲, 牛晓君, 等. 铜绿微囊藻溶藻菌EA-1的分离鉴定及溶藻特性[J]. 中国环境科学, 2021, 41(11): 5372-5381. doi: 10.3969/j.issn.1000-6923.2021.11.046
|
[46] |
李超, 惠晓梅, 潘子鹤, 等. 四尾栅藻和蛋白核小球藻对模拟生活污水的处理性能研究[J]. 太原理工大学学报, 2021, 52(6): 880-886. doi: 10.16355/j.cnki.issn1007-9432tyut.2021.06.005
|
[47] |
SARANYA D, SHANTHAKUMAR S. Green microalgae for combined sewage and tannery effluent treatment: performance and lipid accumulation potential[J]. Journal of Environmental Management, 2019, 241: 167-178.
|
[48] |
LI Z H, LIN S Q, LIU X L, et al. A freshwater bacterial strain, Shewanella sp Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo 1, 2-a pyrazine-1, 4-dione and 2, 3-indolinedione[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4737-4748. doi: 10.1007/s00253-014-5602-1
|
[49] |
SUN B K, TANJI Y, UNNO H. Influences of iron and humic acid on the growth of the cyanobacterium Anabaena circinalis[J]. Biochemical Engineering Journal, 2005, 24(3): 195-201. doi: 10.1016/j.bej.2005.02.014
|
[50] |
IMAI A, FUKUSHIMA T, MATSUSHIGE K. Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(10): 1929-1937. doi: 10.1139/f99-131
|