[1] ROTHSCHILD L J, MANCINELLI R L. Life in extreme environments [J]. Nature, 2001, 409(6823): 1092-1101. doi: 10.1038/35059215
[2] DONG H L, HUANG L Q, ZHAO L D, et al. A critical review of mineral-microbe interaction and co-evolution: Mechanisms and applications[J]. National Science Review, 2022,
[3] UROZ S, KELLY L C, TURPAULT M P, et al. The mineralosphere concept: Mineralogical control of the distribution and function of mineral-associated bacterial communities [J]. Trends in Microbiology, 2015, 23(12): 751-762. doi: 10.1016/j.tim.2015.10.004
[4] KLEBER M, BOURG I C, COWARD E K, et al. Dynamic interactions at the mineral–organic matter interface [J]. Nature Reviews Earth & Environment, 2021, 2(6): 402-421.
[5] OELKERS E, GÍSLASON S, MATTER J. Mineral carbonation of CO2 [J]. Elements, 2008, 4: 333-337. doi: 10.2113/gselements.4.5.333
[6] LAMÉRAND C, SHIROKOVA L S, BÉNÉZETH P, et al. Olivine dissolution and hydrous Mg carbonate and silicate precipitation in the presence of microbial consortium of photo-autotrophic and heterotrophic bacteria [J]. Geochimica et Cosmochimica Acta, 2020, 268: 123-141. doi: 10.1016/j.gca.2019.09.040
[7] SALEK S S, KLEEREBEZEM R, JONKERS H M, et al. Mineral CO2 sequestration by environmental biotechnological processes [J]. Trends in Biotechnology, 2013, 31(3): 139-146. doi: 10.1016/j.tibtech.2013.01.005
[8] WANG Y, CAI Z L, ZHANG Y M, et al. Green recovery of vanadium from vanadium-bearing shale under the biological action by Bacillus mucilaginosus and its effect on mineral dissolution [J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107048. doi: 10.1016/j.jece.2021.107048
[9] FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al. Better together: Potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite [J]. Bioresource Technology Reports, 2018, 3: 109-118. doi: 10.1016/j.biteb.2018.07.003
[10] SUN Q B, FU Z Y, FINLAY R, et al. Transcriptome analysis provides novel insights into the capacity of the ectomycorrhizal fungus Amanita pantherina to weather K-containing feldspar and apatite [J]. Applied and Environmental Microbiology, 2019, 85(15): e00719-e00719.
[11] LU A H, LI Y, JIN S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis [J]. Nature Communications, 2012, 3: 768. doi: 10.1038/ncomms1768
[12] 鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层” [J]. 岩石学报, 2019, 35(1): 119-128. doi: 10.18654/1000-0569/2019.01.08 LU A H, LI Y, DING H R, et al. “Mineral membrane” of the surface: “New sphere” of the Earth [J]. Acta Petrologica Sinica, 2019, 35(1): 119-128(in Chinese). doi: 10.18654/1000-0569/2019.01.08
[13] 贾昊凝, 李艳, 黎晏彰, 等. 矿物电子能量协同微生物胞外电子传递与生长代谢 [J]. 微生物学报, 2020, 60(9): 2084-2105. doi: 10.13343/j.cnki.wsxb.20200314 JIA H N, LI Y, LI Y Z, et al. Mineral electronic energy cooperates with microbial extracellular electron transfer and growth metabolism [J]. Acta Microbiologica Sinica, 2020, 60(9): 2084-2105(in Chinese). doi: 10.13343/j.cnki.wsxb.20200314
[14] CHENG H, JING Z H, YANG L, et al. Sunlight-triggered synergy of hematite and Shewanella oneidensis MR-1 in Cr(Ⅵ) removal [J]. Geochimica et Cosmochimica Acta, 2021, 305: 19-32. doi: 10.1016/j.gca.2021.04.034
[15] GADD G M. Metals, minerals and microbes: Geomicrobiology and bioremediation[J]. Microbiology, 2010, 156(Pt 3): 609-643.
[16] ZHANG L, GADD G M, LI Z. Microbial biomodification of clay minerals [J]. Advances in Applied Microbiology, 2021, 114: 111-139.
[17] BISWAS B, CHAKRABORTY A, SARKAR B, et al. Structural changes in smectite due to interaction with a biosurfactant-producing bacterium Pseudoxanthomonas kaohsiungensis [J]. Applied Clay Science, 2017, 136: 51-57. doi: 10.1016/j.clay.2016.11.008
[18] BISWAS B, SARKAR B, RUSMIN R, et al. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction [J]. Environment International, 2015, 85: 168-181. doi: 10.1016/j.envint.2015.09.017
[19] QU C C, DU H H, MA M K, et al. Pb sorption on montmorillonite-bacteria composites: A combination study by XAFS, ITC and SCM [J]. Chemosphere, 2018, 200: 427-436. doi: 10.1016/j.chemosphere.2018.02.136
[20] QU C C, CHEN W L, HU X P, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors [J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995
[21] MA W T, PENG D H, WALKER S L, et al. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides [J]. NPJ Biofilms and Microbiomes, 2017, 3: 4. doi: 10.1038/s41522-017-0013-6
[22] XU S Z, XING Y H, LIU S, et al. Co-effect of minerals and Cd(Ⅱ) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II) [J]. Environmental Pollution, 2020, 258: 113774. doi: 10.1016/j.envpol.2019.113774
[23] ZHANG L M, CHEN Y, XIA Q Y, et al. Combined effects of Fe(Ⅲ)-bearing clay minerals and organic ligands on U(Ⅵ) bioreduction and U(Ⅳ) speciation [J]. Environmental Science & Technology, 2021, 55(9): 5929-5938.
[24] BISHOP M E, DONG H L, GLASSER P, et al. Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction [J]. Geochimica et Cosmochimica Acta, 2019, 252: 88-106. doi: 10.1016/j.gca.2019.02.039
[25] OUYANG B J, LU X C, LIU H, et al. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization [J]. Geochimica et Cosmochimica Acta, 2014, 124: 54-71. doi: 10.1016/j.gca.2013.09.020
[26] 陆现彩, 李娟, 刘欢, 等. 金属硫化物微生物氧化的机制和效应 [J]. 岩石学报, 2019, 35(1): 153-163. doi: 10.18654/1000-0569/2019.01.12 LU X C, LI J, LIU H, et al. Microbial oxidation of metal sulfides and its consequences [J]. Acta Petrologica Sinica, 2019, 35(1): 153-163(in Chinese). doi: 10.18654/1000-0569/2019.01.12
[27] DONG H, LU A. Mineral-microbe interactions and implications for remediation [J]. Elements, 2012, 8(2): 95-100. doi: 10.2113/gselements.8.2.95
[28] DONG H L. Mineral-microbe interactions: A review [J]. Frontiers of Earth Science in China, 2010, 4(2): 127-147. doi: 10.1007/s11707-010-0022-8
[29] BENNETT P C, ROGERS J R, CHOI W J, et al. Silicates, silicate weathering, and microbial ecology [J]. Geomicrobiology Journal, 2001, 18(1): 3-19. doi: 10.1080/01490450151079734
[30] COSTA O Y A, RAAIJMAKERS J M, KURAMAE E E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation [J]. Frontiers in Microbiology, 2018, 9: 1636. doi: 10.3389/fmicb.2018.01636
[31] KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: Formation, properties, and relevance in soil environments [J]. Advances in Agronomy, 2015, 130: 1-140.
[32] SMALL T D, WARREN L A, RODEN E E, et al. Sorption of strontium by bacteria, Fe(Ⅲ) oxide, and Bacteria−Fe(Ⅲ) oxide composites [J]. Environmental Science & Technology, 1999, 33(24): 4465-4470.
[33] DU H H, HUANG Q Y, PEACOCK C L, et al. Competitive binding of Cd, Ni and Cu on goethite organo-mineral composites made with soil bacteria [J]. Environmental Pollution, 2018, 243: 444-452. doi: 10.1016/j.envpol.2018.08.087
[34] ZHU Y, LI Y, LU A H, et al. Study of the interaction between bentonite and a strain of Bacillus mucilaginosus [J]. Clays and Clay Minerals, 2011, 59(5): 538-545. doi: 10.1346/CCMN.2011.0590511
[35] CAI P, LIN D, PEACOCK C L, et al. EPS adsorption to goethite: Molecular level adsorption mechanisms using 2D correlation spectroscopy [J]. Chemical Geology, 2018, 494: 127-135. doi: 10.1016/j.chemgeo.2018.07.028
[36] GADD G M. Geomicrobiology of the built environment [J]. Nature Microbiology, 2017, 2: 16275. doi: 10.1038/nmicrobiol.2016.275
[37] WANG H M, WU P X, LIU J, et al. The regulatory mechanism of Chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress [J]. Chemosphere, 2020, 240: 124851. doi: 10.1016/j.chemosphere.2019.124851
[38] RUAN B, WU P X, LIU J, et al. Adhesion of Sphingomonas sp. GY2B onto montmorillonite: A combination study by thermodynamics and the extended DLVO theory [J]. Colloids and Surfaces. B, Biointerfaces, 2020, 192: 111085. doi: 10.1016/j.colsurfb.2020.111085
[39] RUAN B, WU P X, WANG H M, et al. Effects of interaction between montmorillonite and Sphingomonas sp. GY2B on the physical and chemical properties of montmorillonite in the clay-modulated biodegradation of phenanthrene [J]. Environmental Chemistry, 2018, 15: 296-305. doi: 10.1071/EN18001
[40] POURJASEM L, LANDI A, ENAYATIZAMIR N, et al. The release of some elements from vermiculite during the short periods of incubation by heterotrophic bacteria [J]. Eurasian Soil Science, 2020, 53(2): 223-229. doi: 10.1134/S106422932002009X
[41] LIN J Y, HU S W, LIU T X, et al. Coupled kinetics model for microbially mediated arsenic reduction and adsorption/desorption on iron oxides: Role of arsenic desorption induced by microbes [J]. Environmental Science & Technology, 2019, 53(15): 8892-8902.
[42] YU G H, KUZYAKOV Y, LUO Y, et al. Molybdenum bioavailability and asymbiotic nitrogen fixation in soils are raised by iron (oxyhydr)oxide-mediated free radical production [J]. Environmental Science & Technology, 2021, 55(21): 14979-14989.
[43] OYEWOLE O A, RAJI R O, MUSA I O, et al. Enhanced degradation of crude oil with Alcaligenes faecalis ADY25 and iron oxide nanoparticle [J]. International Journal of Applied Biological Research, 2019, 10(2): 62-72.
[44] WANG Q, GAO S, MA X, et al. Distinct mineral weathering effectiveness and metabolic activity between mineral-weathering bacteria Burkholderia metallica F22 and Burkholderia phytofirmans G34 [J]. Chemical Geology, 2018, 489: 38-45. doi: 10.1016/j.chemgeo.2018.05.016
[45] CHEN W, LUO L, HE L Y, et al. Distinct mineral weathering behaviors of the novel mineral-weathering strains Rhizobium yantingense H66 and Rhizobium etli CFN42 [J]. Applied and Environmental Microbiology, 2016, 82(14): 4090-4099. doi: 10.1128/AEM.00918-16
[46] BAO Y Y, KWOK A H, HE L Y, et al. Complete genome sequence of Dyella jiangningensis strain SBZ3-12, isolated from the surfaces of weathered rock [J]. Genome Announcements, 2014, 2(3): e00416-e00414.
[47] GRANT M R, TYMON L S, HELMS G L, et al. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering [J]. Geobiology, 2016, 14(6): 588-598. doi: 10.1111/gbi.12187
[48] SAHA M, MAURYA B R, BAHADUR I, et al. Can potassium-solubilising bacteria mitigate the potassium problems in India?//Potassium solubilizing microorganisms for sustainable agriculture[M]. New Delhi: Springer, 2016: 127-136.
[49] BALLAND-BOLOU-BI C, BOLOU-BI E B, VIGIER N, et al. Increased Mg release rates and related Mg isotopic signatures during bacteria-phlogopite interactions [J]. Chemical Geology, 2019, 506: 17-28. doi: 10.1016/j.chemgeo.2018.12.020
[50] RAJAWAT M V S, SINGH R, SINGH D, et al. Psychrotrophs of the genus Janthinobacterium with potential to weather potassium aluminosilicate mineral [J]. Biotech, 2019, 9(4): 142. doi: 10.1007/s13205-019-1672-1
[51] YANG S S, QU C C, MUKHERJEE M, et al. Soil phyllosilicate and iron oxide inhibit the quorum sensing of Chromobacterium violaceum [J]. Soil Ecology Letters, 2021, 3(1): 22-31. doi: 10.1007/s42832-020-0051-5
[52] GUO W W, MA H, LI F C, et al. Citrobacter sp. strain GW-M mediates the coexistence of carbonate minerals with various morphologies [J]. Geomicrobiology Journal, 2013, 30(8): 749-757. doi: 10.1080/01490451.2013.769650
[53] TONG H, ZHENG C J, LI B, et al. Microaerophilic oxidation of Fe(II) coupled with simultaneous carbon fixation and as(III) oxidation and sequestration in karstic paddy soil [J]. Environmental Science & Technology, 2021, 55(6): 3634-3644.
[54] WANG S, WU Y, AN J K, et al. Geobacter autogenically secretes fulvic acid to facilitate the dissimilated iron reduction and vivianite recovery [J]. Environmental Science & Technology, 2020, 54(17): 10850-10858.
[55] YI Q, WU S L, SOUTHAM G, et al. Acidophilic iron- and sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore tailings [J]. Environmental Science & Technology, 2021, 55(12): 8020-8034.
[56] TIAN L, GUAN W Y, JI Y Y, et al. Microbial methylation potential of mercury sulfide particles dictated by surface structure [J]. Nature Geoscience, 2021, 14(6): 409-416. doi: 10.1038/s41561-021-00735-y
[57] JONES L C, LAFFERTY B J, SPARKS D L. Additive and competitive effects of bacteria and Mn oxides on arsenite oxidation kinetics [J]. Environmental Science & Technology, 2012, 46(12): 6548-6555.
[58] SUN W M, SUN X X, HÄGGBLOM M M, et al. Identification of antimonate reducing bacteria and their potential metabolic traits by the combination of stable isotope probing and metagenomic-pangenomic analysis [J]. Environmental Science & Technology, 2021, 55(20): 13902-13912.
[59] SUN X X, QIU L, KOLTON M, et al. V reduction by Polaromonas spp. in vanadium mine tailings [J]. Environmental Science & Technology, 2020, 54(22): 14442-14454.
[60] SUN X X, KONG T L, LI F B, et al. Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V) reduction, a novel biogeochemical process [J]. The ISME Journal, 2022, 16(6): 1547-1556. doi: 10.1038/s41396-022-01201-2
[61] SANYAL S K, SHUSTER J. Gold particle geomicrobiology: Using viable bacteria as a model for understanding microbe–mineral interactions [J]. Mineralogical Magazine, 2021, 85(1): 117-124. doi: 10.1180/mgm.2021.19
[62] REN G P, YAN Y C, NIE Y, et al. Natural extracellular electron transfer between semiconducting minerals and electroactive bacterial communities occurred on the rock varnish [J]. Frontiers in Microbiology, 2019, 10: 293. doi: 10.3389/fmicb.2019.00293
[63] YANG X X, LI Y, LU A H, et al. Effect of Bacillus mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite [J]. Applied Clay Science, 2016, 119: 141-145. doi: 10.1016/j.clay.2015.08.033
[64] YAN S J, CAI Y G, LI H Q, et al. Enhancement of cadmium adsorption by EPS-montmorillonite composites [J]. Environmental Pollution, 2019, 252: 1509-1518. doi: 10.1016/j.envpol.2019.06.071
[65] ZHAO Y L, DONG F Q, DAI Q W, et al. Variation of preserving organic matter bound in interlayer of montmorillonite induced by microbial metabolic process [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22348-22355. doi: 10.1007/s11356-017-9806-7
[66] REN X Y, LI F C, CAI Y F, et al. Paenibacillus sp. strain SB-6 induces weathering of Ca-montmorillonite: Illitization and formation of calcite [J]. Geomicrobiology Journal, 2017, 34(1): 1-10. doi: 10.1080/01490451.2015.1129472
[67] LIU D F, LIAN B, DONG H L. Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering [J]. Geomicrobiology Journal, 2012, 29(5): 413-421. doi: 10.1080/01490451.2011.576602
[68] ZHOU Y F, WANG R C, LU X C. Anorthite dissolution promoted by bacterial adhesion: Direct evidence from dialytic experiment [J]. Science China Earth Sciences, 2011, 54(2): 204-211. doi: 10.1007/s11430-010-4068-y
[69] SUN Y, WANG Y L, LI L, et al. Distinct biotite-weathering activities of Arthrobacter pascens F74 under different contact conditions [J]. Journal of Basic Microbiology, 2020, 60(4): 362-371. doi: 10.1002/jobm.201900518
[70] RATHOD J, JEAN J S, JIANG W T, et al. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions [J]. Science of the Total Environment, 2019, 669: 527-539. doi: 10.1016/j.scitotenv.2019.03.084
[71] WELCH S A, BARKER W W, BANFIELD J F. Microbial extracellular polysaccharides and plagioclase dissolution [J]. Geochimica et Cosmochimica Acta, 1999, 63(9): 1405-1419. doi: 10.1016/S0016-7037(99)00031-9
[72] DONG Y B, LIU Y, LIN H, et al. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 849-858. doi: 10.1016/S1003-6326(19)64995-2
[73] LI Q F, DONG F Q, DAI Q W, et al. Surface properties of PM2.5 calcite fine particulate matter in the presence of same size bacterial cells and exocellular polymeric substances (EPS) of Bacillus mucitaginosus [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22429-22436. doi: 10.1007/s11356-017-0829-x
[74] 王建萍, 李琼芳, 董发勤, 等. 3种常见细菌胞外特征有机酸对方解石的溶蚀研究 [J]. 岩石矿物学杂志, 2015, 34(3): 387-392. WANG J P, LI Q F, DONG F Q, et al. A study of the dissolution of calcite by three common bacterial typical extracellular organic acids [J]. Acta Petrologica et Mineralogica, 2015, 34(3): 387-392(in Chinese).
[75] EHRLICH H L. Geomicrobiology: relative roles of bacteria and fungi as geomicrobial agents//Fungi in Biogeochemical Cycles[M]. Cambridge: Cambridge University Press, 2006: 1-27.
[76] 董子阳, 胡佳杰, 胡宝兰. 微生物铁载体转运调控机制及其在环境污染修复中的应用 [J]. 生物工程学报, 2019, 35(11): 2189-2200. DONG Z Y, HU J J, HU B L. Regulation of microbial siderophore transport and its application in environmental remediation [J]. Chinese Journal of Biotechnology, 2019, 35(11): 2189-2200(in Chinese).
[77] RIBEIRO I D A, VOLPIANO C G, VARGAS L K, et al. Use of mineral weathering bacteria to enhance nutrient availability in crops: A review [J]. Frontiers in Plant Science, 2020, 11: 590774. doi: 10.3389/fpls.2020.590774
[78] FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: an emergent form of bacterial life [J]. Nature Reviews Microbiology, 2016, 14(9): 563-575. doi: 10.1038/nrmicro.2016.94
[79] GLOWA K R, AROCENA J M, MASSICOTTE H B. Extraction of potassium and/or magnesium from selected soil minerals by Piloderma [J]. Geomicrobiology Journal, 2003, 20(2): 99-111.
[80] TEITZEL G M, PARSEK M R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa [J]. Applied and Environmental Microbiology, 2003, 69(4): 2313-2320. doi: 10.1128/AEM.69.4.2313-2320.2003
[81] JUCKER B A, HARMS H, HUG S J, et al. Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds [J]. Colloids and Surfaces B:Biointerfaces, 1997, 9(6): 331-343. doi: 10.1016/S0927-7765(97)00038-6
[82] YU W H, LI N, TONG D S, et al. Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review [J]. Applied Clay Science, 2013, 80/81: 443-452. doi: 10.1016/j.clay.2013.06.003
[83] ZHOU X Y, HUANG Q Y, CHEN S W, et al. Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and Red soil [J]. Applied Clay Science, 2005, 30(2): 87-93. doi: 10.1016/j.clay.2005.04.003
[84] CAO Y Y, WEI X, CAI P, et al. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide [J]. Colloids and Surfaces B:Biointerfaces, 2011, 83(1): 122-127. doi: 10.1016/j.colsurfb.2010.11.018
[85] WU Y C, CAI P, JING X X, et al. Soil biofilm formation enhances microbial community diversity and metabolic activity [J]. Environment International, 2019, 132: 105116. doi: 10.1016/j.envint.2019.105116
[86] 朱永官, 段桂兰, 陈保冬, 等. 土壤-微生物-植物系统中矿物风化与元素循环 [J]. 中国科学:地球科学, 2014, 44(6): 1107-1116. doi: 10.1360/zd-2014-44-6-1107 ZHU Y G, DUAN G L, CHEN B D, et al. Mineral weathering and element cycling in soil-microorganism-plant system [J]. Scientia Sinica (Terrae), 2014, 44(6): 1107-1116(in Chinese). doi: 10.1360/zd-2014-44-6-1107
[87] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382(6590): 445-448. doi: 10.1038/382445a0
[88] ESTHER J, SUKLA L B, PRADHAN N, et al. Fe (Ⅲ) reduction strategies of dissimilatory iron reducing bacteria [J]. Korean Journal of Chemical Engineering, 2015, 32(1): 1-14. doi: 10.1007/s11814-014-0286-x
[89] LIU T X, WANG Y, LIU C X, et al. Conduction band of hematite can mediate cytochrome reduction by Fe(Ⅱ) under dark and anoxic conditions [J]. Environmental Science & Technology, 2020, 54(8): 4810-4819.
[90] SANTELLI C M, WEBB S M, DOHNALKOVA A C, et al. Diversity of Mn oxides produced by Mn(Ⅱ)-oxidizing fungi [J]. Geochimica et Cosmochimica Acta, 2011, 75(10): 2762-2776. doi: 10.1016/j.gca.2011.02.022
[91] SPIRO T G, BARGAR J R, SPOSITO G, et al. Bacteriogenic manganese oxides [J]. Accounts of Chemical Research, 2010, 43(1): 2-9. doi: 10.1021/ar800232a
[92] WEI Z, HILLIER S, GADD G M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals [J]. Environmental Microbiology, 2012, 14(7): 1744-1753. doi: 10.1111/j.1462-2920.2012.02776.x
[93] BURGHELEA C I, DONTSOVA K, ZAHARESCU D G, et al. Trace element mobilization during incipient bioweathering of four rock types [J]. Geochimica et Cosmochimica Acta, 2018, 234: 98-114. doi: 10.1016/j.gca.2018.05.011
[94] MENDES G O, BAHRI-ESFAHANI J, CSETENYI L, et al. Chemical and physical mechanisms of fungal bioweathering of rock phosphate [J]. Geomicrobiology Journal, 2021, 38(5): 384-394. doi: 10.1080/01490451.2020.1863525
[95] CHI Z L, YU G H, KAPPLER A, et al. Fungal-mineral interactions modulating intrinsic peroxidase-like activity of iron nanoparticles: Implications for the biogeochemical cycles of nutrient elements and attenuation of contaminants [J]. Environmental Science & Technology, 2022, 56(1): 672-680.
[96] SUN Q B, LIAN B. The different roles of Aspergillus nidulans carbonic anhydrases in wollastonite weathering accompanied by carbonation [J]. Geochimica et Cosmochimica Acta, 2019, 244: 437-450. doi: 10.1016/j.gca.2018.10.022
[97] KRAUSE S, LIEBETRAU V, LÖSCHER C R, et al. Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation [J]. Geochimica et Cosmochimica Acta, 2018, 243: 116-132. doi: 10.1016/j.gca.2018.09.018
[98] POWER I M, HARRISON A L, DIPPLE G M. Accelerating mineral carbonation using carbonic anhydrase [J]. Environmental Science & Technology, 2016, 50(5): 2610-2618.
[99] FOMINA M, SKOROCHOD I. Microbial interaction with clay minerals and its environmental and biotechnological implications [J]. Minerals, 2020, 10(10): 861. doi: 10.3390/min10100861
[100] SU M, HAN F Y, WU Y L, et al. Effects of phosphate-solubilizing bacteria on phosphorous release and sorption on montmorillonite [J]. Applied Clay Science, 2019, 181: 105227. doi: 10.1016/j.clay.2019.105227
[101] LI G L, ZHOU C H, FIORE S, et al. Interactions between microorganisms and clay minerals: New insights and broader applications [J]. Applied Clay Science, 2019, 177: 91-113. doi: 10.1016/j.clay.2019.04.025
[102] YUAN G D, THENG B K G, CHURCHMAN G J, et al. Clays and clay minerals for pollution control//Handbook of clay science [M]. Amsterdam: Elsevier, 2013: 587-644.
[103] O'DAY P A, VLASSOPOULOS D. Mineral-based amendments for remediation [J]. Elements (Quebec, Quebec), 2010, 6(6): 375-381. doi: 10.2113/gselements.6.6.375
[104] CAO B, SHI L, BROWN R N, et al. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics [J]. Environmental Microbiology, 2011, 13(4): 1018-1031. doi: 10.1111/j.1462-2920.2010.02407.x
[105] LIN H R, WANG C Y, ZHAO H M, et al. A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms [J]. Environmental Pollution, 2020, 263: 114485. doi: 10.1016/j.envpol.2020.114485
[106] MISHRA J, SINGH R, ARORA N K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms [J]. Frontiers in Microbiology, 2017, 8: 1706. doi: 10.3389/fmicb.2017.01706
[107] CHEN R Q, TU H J, CHEN T T. Potential application of living microorganisms in the detoxification of heavy metals [J]. Foods (Basel, Switzerland), 2022, 11(13): 1905.
[108] DHAMI N K, REDDY M S, MUKHERJEE A. Biomineralization of calcium carbonates and their engineered applications: A review [J]. Frontiers in Microbiology, 2013, 4: 314.
[109] SINHA A, SINGH A, KUMAR S, et al. Microbial mineralization of struvite: A promising process to overcome phosphate sequestering crisis [J]. Water Research, 2014, 54: 33-43. doi: 10.1016/j.watres.2014.01.039
[110] TEBO B M, HE L M. Microbially mediated oxidative precipitation reactions //Mineral-water interfacial reactions [M]. Washington, DC: Americal Chemical Society. 1999: 393-414
[111] LI F, WANG W, LI C C, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01 [J]. Journal of Hazardous Materials, 2018, 358: 178-186. doi: 10.1016/j.jhazmat.2018.06.066
[112] DU H H, CHEN W L, CAI P, et al. Cd(Ⅱ) sorption on montmorillonite-humic acid-bacteria composites [J]. Scientific Reports, 2016, 6: 19499. doi: 10.1038/srep19499
[113] TAN J Q, LI Y T, XIA L, et al. Enhancement of Cd(Ⅱ) adsorption on microalgae–montmorillonite composite [J]. Arabian Journal for Science and Engineering, 2022, 47(6): 6715-6727. doi: 10.1007/s13369-021-06063-y
[114] ZENG Q, HUANG L Q, MA J Y, et al. Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: Effect of montmorillonite and fate of organic matter [J]. Geochimica et Cosmochimica Acta, 2020, 276: 327-344. doi: 10.1016/j.gca.2020.03.011
[115] HUANG Q Y, CHEN W L, XU L H. Adsorption of copper and cadmium by Cu- and Cd-resistant bacteria and their composites with soil colloids and kaolinite [J]. Geomicrobiology Journal, 2005, 22(5): 227-236. doi: 10.1080/01490450590947779
[116] ZHOU Q X, LIU Y X, LI T, et al. Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling [J]. Geochimica et Cosmochimica Acta, 2020, 290: 124-136. doi: 10.1016/j.gca.2020.09.002
[117] WEI T, LIU X, DONG M F, et al. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L. ) [J]. Journal of Environmental Management, 2021, 278: 111533. doi: 10.1016/j.jenvman.2020.111533
[118] COOPER R, EUSTERHUES K, WEGNER C E, et al. Ferrihydrite associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia [J]. Biogeosciences Discussions, 2017, 14(22): 1-32.
[119] WANG Y, LIU X H, SI Y B, et al. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria [J]. Chemical Engineering Journal, 2016, 295: 29-38. doi: 10.1016/j.cej.2016.03.027
[120] MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1 [J]. Chemosphere, 2020, 247: 125902. doi: 10.1016/j.chemosphere.2020.125902
[121] ZHANG K, LI N, LIAO P, et al. Conductive property of secondary minerals triggered Cr(Ⅵ) bioreduction by dissimilatory iron reducing bacteria [J]. Environmental Pollution, 2021, 286: 117227. doi: 10.1016/j.envpol.2021.117227