[1] |
WU Y Q, YU X, YAN Z, et al. Evolution of river network due to urbanization in the Southeast Yinzhou Plain of Yongjiang River Basin, China[J]. Journal of Cleaner Production, 2022, 379(P1): 134718.
|
[2] |
钟胜财, 胡婷, 郑小燕, 等. 生态文明背景下平原地区中小流域水系生态修复实践应用[J]. 环境生态学, 2021, 3(7): 49-55.
|
[3] |
LI R, SONG S P, YUE Z. Evaluation of river ecological status in the plain river network area in the context of urbanization: A case study of 21 Rivers’ ecological status in Jiangsu Province, China[J]. Ecological Indicators, 2022, 142: 109172. doi: 10.1016/j.ecolind.2022.109172
|
[4] |
马迎群, 曹伟, 赵艳民, 等. 典型平原河网区水体富营养化特征、成因分析及控制对策研究[J]. 环境科学学报, 2022, 42(2): 174-183.
|
[5] |
严以新, 蒋小欣, 阮晓红, 等. 平原河网区城市水污染特征及控制对策研究[J]. 水资源保护, 2008, 24(5): 1-3. doi: 10.3969/j.issn.1004-6933.2008.05.001
|
[6] |
魏蓥蓥, 李一平, 翁晟琳, 等. 太湖流域城市化对平原河网水系结构与连通性影响[J]. 湖泊科学, 2020, 32(2): 553-563.
|
[7] |
林芷欣, 许有鹏, 代晓颖, 等. 城市化进程对长江下游平原河网水系格局演变的影响[J]. 长江流域资源与环境, 2019, 28(11): 2612-2620.
|
[8] |
罗国根, 何丽琼. 平原河网水污染特性及防治实践[J]. 环境与发展, 2019, 31(6): 47-48. doi: 10.16647/j.cnki.cn15-1369/X.2019.06.029
|
[9] |
郭赟, 黄晓峰, 李海妮, 等. 城市河道环保疏浚与水利疏浚效果研究——以无锡市梁塘河薛家浜为例[J]. 环境工程技术学报, 2020, 10(3): 400-405. doi: 10.12153/j.issn.1674-991X.20190104
|
[10] |
刘帅, 文韬, 马竞, 等. 基于多参数评价体系的三种人工湿地净化能力研究[J]. 中国给水排水, 2019, 35(12): 55-59. doi: 10.19853/j.zgjsps.1000-4602.2019.12.011
|
[11] |
ILYAS H, HULLEBUSCH E. A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103793. doi: 10.1016/j.jece.2020.103793
|
[12] |
SUN W J, ZHENG Z. Research on removal of fluoroquinolones in rural domestic wastewater by vertical flow constructed wetlands under different hydraulic loads[J]. Chemosphere, 2022: 135100.
|
[13] |
郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002
|
[14] |
程果, 杨永哲, 高壮, 等. 人工湿地-EAS系统在污泥厌氧消化液脱氮中的应用[J]. 工业水处理, 2017, 37(12): 34-37. doi: 10.11894/1005-829x.2017.37(12).034
|
[15] |
LIU Y, LIU X H, LI K, et al. Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism[J]. Science of the Total Environment, 2019, 652: 977-988. doi: 10.1016/j.scitotenv.2018.10.313
|
[16] |
丁达江, 杨永哲, 吴雷, 等. 分段进水对深层床潮汐流人工湿地硝化-反硝化性能的影响[J]. 水处理技术, 2016, 42(11): 104-109.
|
[17] |
丁海静, 丁彦礼, 游俊杰, 等. 基质结构对人工湿地运行性能的影响分析[J]. 水处理技术, 2018, 44(12): 91-95.
|
[18] |
许光明. 基质配置对人工湿地性能及温室气体通量的影响研究[D]. 青岛: 青岛大学, 2020.
|
[19] |
BEHARRELL M. Planting, selection and plant establishment in constructed wetlands in a tropical environment[J]. Wetlands Ecosystems in Asia, 2004: 311-329.
|
[20] |
王文垅. 低温季节西伯利亚鸢尾人工湿地对污染河水的净化研究[D]. 郑州: 郑州大学, 2014.
|
[21] |
COSKUN D, BRITTO D, SHI W M, et al. How plant root exudates shape the nitrogen cycle[J]. Trends in Plant Science, 2017, 22(8): 661-673. doi: 10.1016/j.tplants.2017.05.004
|
[22] |
彭宁彦. 抚河故道湿地植物水环境效应研究[D]. 南昌: 南昌大学, 2019.
|
[23] |
FLORES L, GARCÍA J, PENA R, et al. Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment[J]. Science of the Total Environment, 2019, 659: 1567-1576. doi: 10.1016/j.scitotenv.2018.12.348
|
[24] |
李玲丽. 复合人工湿地脱氮途径及微生物多样性研究[D]. 重庆: 重庆大学, 2015.
|
[25] |
孙寓姣, 陈程, 丁爱中, 等. 官厅水库水质特征及水体微生物多样性的响应[J]. 中国环境科学, 2015, 35(5): 1547-1553. doi: 10.3969/j.issn.1000-6923.2015.05.035
|
[26] |
LV X F, YU J B, FU Y Q, et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils[J]. The Scientific World Journal, 2014, 2014: 437684.
|
[27] |
WANG S Q, CUI Y B, LI A M, et al. Deciphering of organic matter and nutrient removal and bacterial community in three sludge treatment wetlands under different operating conditions[J]. Journal of Environmental Management, 2020, 260(C): 110159.
|
[28] |
刘彩霞, 董玉红, 焦如珍. 森林土壤中酸杆菌门多样性研究进展[J]. 世界林业研究, 2016, 29(6): 17-22. doi: 10.13348/j.cnki.sjlyyj.2016.0041.y
|
[29] |
李金业, 陈庆锋, 李青, 等. 黄河三角洲滨海湿地微生物多样性及其驱动因子[J]. 生态学报, 2021, 41(15): 6103-6114.
|
[30] |
房昀昊. 人工湿地和自然湿地细菌群落结构特征比较[D]. 长沙: 湖南大学, 2018.
|
[31] |
鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820. doi: 10.13343/j.cnki.wsxb.20200463
|
[32] |
周磊, 李育森, 黄仙德, 等. 洪潮江水库浮游细菌群落空间分布及其与环境因子的关系[J]. 微生物学报, 2020, 60(10): 2253-2264. doi: 10.13343/j.cnki.wsxb.20190597
|
[33] |
马香菊. 天津滨海人工湿地细菌种群特征及氮降解菌筛选[D]. 北京: 中国环境科学研究院, 2021.
|
[34] |
洪义国, 焦黎静, 吴佳鹏, 等. 海洋亚硝酸盐氧化细菌的多样性分布及其生态功能研究进展[J]. 热带海洋学报, 2021, 40(2): 139-146. doi: 10.11978/2020043
|
[35] |
WU X J, PENG J J, LIU P F, et al. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments[J]. Science of the Total Environment, 2021, 785: 147329. doi: 10.1016/j.scitotenv.2021.147329
|
[36] |
蔡广强, 张金松, 刘彤宙, 等. 活性炭-超滤深度处理工艺中细菌群落时空分布及动态变化规律[J]. 环境工程学报, 2021, 15(4): 1465-1472. doi: 10.12030/j.cjee.202008166
|
[37] |
GUO H H, GU J, WANG X J, et al. Microbial driven reduction of N2O and NH3 emissions during composting: Effects of bamboo charcoal and bamboo vinegar[J]. Journal of Hazardous Materials, 2020, 390: 121292. doi: 10.1016/j.jhazmat.2019.121292
|
[38] |
SHI S H, HE L, ZHOU Y, et al. Response of nitrogen removal performance and microbial community to a wide range of pH in thermophilic denitrification system[J]. Bioresource Technology, 2022, 352: 127061. doi: 10.1016/j.biortech.2022.127061
|
[39] |
陈祥瑞, 杜强强, 韩文杰, 等. 基于纯膜MBBR的紧凑型污水处理BFM中试基质转化特性[J]. 环境工程学报, 2021, 15(11): 3741-3756. doi: 10.12030/j.cjee.202107149
|
[40] |
LIU B, YAO J, MA B, et al. Metal(loid)s diffusion pathway triggers distinct microbiota responses in key regions of typical karst non-ferrous smelting assembly[J]. Journal of Hazardous Materials, 2022, 423(PB): 127164.
|
[41] |
ZHANG Q Y, GAO M, SUN X H, et al. Nationwide distribution of polycyclic aromatic hydrocarbons in soil of China and the association with bacterial community[J]. Journal of Environmental Sciences, 2023, 128: 1-11. doi: 10.1016/j.jes.2022.07.026
|
[42] |
YANG C D, LIU J J, YING H C, et al. Soil pore structure changes induced by biochar affect microbial diversity and community structure in an Ultisol[J]. Soil & Tillage Research, 2022, 224: 105505.
|
[43] |
DENG L T, LIU W Y, CHANG N, et al. Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: A novel perspective[J]. Bioresource Technology, 2022, 367: 128235.
|
[44] |
YU J, GU J, WANG X J, et al. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting[J]. Bioresource Technology, 2020, 313: 123664. doi: 10.1016/j.biortech.2020.123664
|
[45] |
ZHOU W J, QIN X, DEGUO L, et al. Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis[J]. Horticultural Plant Journal, 2021, 7(4): 307-317. doi: 10.1016/j.hpj.2021.02.002
|