[1] GAO H, QIAN X, WU H, et al. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body: A case study of Gonghu Bay, Lake Taihu[J]. Ecological Engineering, 2017, 102: 15-23. doi: 10.1016/j.ecoleng.2017.01.013
[2] DHOTE S, DIXIT S. Water quality improvement through macrophytes-a review[J]. Environmental Monitoring and Assessment, 2009, 152(1-4): 149-153. doi: 10.1007/s10661-008-0303-9
[3] 陈灿, 王国祥, 朱增银, 等. 城市人工湖泊水生植被生态恢复技术[J]. 湖泊科学, 2006(5): 523-527.
[4] RODRIGO M A. Wetland restoration with hydrophytes: A review[J]. Plants -Basel, 2021, 10(6): 1035. doi: 10.3390/plants10061035
[5] 朱义, 张群, 刘家霖, 等. 沿岸用地状况对中小河道沉水植物定居光照强度的影响[J]. 环境科学学报, 2021, 41(6): 2414-2420.
[6] 闫志强, 刘黾, 吴小业, 等. 温度对五种沉水植物生长和营养去除效果的影响[J]. 生态科学, 2014, 33(5): 839-844.
[7] YIN X, ZHANG J, HU Z, et al. Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with Phragmites australis[J]. Environmental Science and Pollution Research, 2016, 23: 15524-15531. doi: 10.1007/s11356-016-6730-1
[8] LIU Y, BAI G, ZOU Y, et al. Combined remediation mechanism of bentonite and submerged plants on lake sediments by DGT technique[J]. Chemosphere, 2022, 298: 134236. doi: 10.1016/j.chemosphere.2022.134236
[9] SONG Y Z, WANG J Q, GAO Y X. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body[J]. Environmental Science And Pollution Research, 2017, 24(10): 9548-9555. doi: 10.1007/s11356-017-8604-6
[10] YAMG Y, ZHAO Y, LIU R, et al. Global development of various emerged substrates utilized in constructed wetlands[J]. Bioresource Technology, 2018, 261: 441-452. doi: 10.1016/j.biortech.2018.03.085
[11] GAO P, ZHANG Y, WANG S. Increasing the hydrophyte removal rate of dissolved inorganic phosphorus using a novel Fe-Mg-loaded activated carbon hydroponic substrate with adsorption-release dual functions[J]. Journal of Environmental Management, 2022, 313: 114998. doi: 10.1016/j.jenvman.2022.114998
[12] 宗小香, 闵梦月, 孙广芳, 等. 铁-碳内电解质下4种水生植物的净水效果[J]. 应用生态学报, 2016, 27(7): 2084-2090.
[13] 孙耀胜, 么强, 刘竞依, 等. 生物炭材料在水体有机污染治理中的研究进展[J]. 环境科学与技术, 2021, 44(01): 170-180.
[14] 费颖恒, 邓海燕, 李敏烯, 等. 富硅生物炭对重金属污染土壤的改良修复作用[J]. 环境科学与技术, 2021, 44(12): 177-184.
[15] ZHANG C, LIU L, ZHAO M, et al. The environmental characteristics and applications of biochar[J]. Environmental Science And Pollution Research, 2018, 25(22): 21525-21534. doi: 10.1007/s11356-018-2521-1
[16] HUANG C, WANG W, YUE S, et al. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness[J]. Environmental Pollution, 2020, 263(Pt A): 114586.
[17] ASADVAR L, XU C Y, WALLACE H M, et al. Soil-plant nitrogen isotope composition and nitrogen cycling after biochar applications[J]. Environmental Science and Pollution Research, 2021, 28(6): 6684-6690. doi: 10.1007/s11356-020-11016-3
[18] GALE N V, THOMAS S C. Dose-dependence of growth and ecophysiological responses of plants to biochar[J]. Science of the Total Environment, 2019, 658: 1344-1354. doi: 10.1016/j.scitotenv.2018.12.239
[19] 张瑄文, 李三姗, 甘琳, 等. 生物质炭对苦草(Vallisneria spiralis)种子萌发与生长的影响[J]. 湖泊科学, 2018, 30(4): 1041-1051. doi: 10.18307/2018.0417
[20] MURAD H A, AHNAD M, BUNDSCHUH J, et al. A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell[J]. Environmental Research, 2022, 204(Pt B): 112125.
[21] FREY P A, REED G H. The ubiquity of iron[J]. ACS Chemical Biology, 2012, 7(9): 1477-1481. doi: 10.1021/cb300323q
[22] FANG W C, KAO C H. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc[J]. Plant Science, 2000, 158(1): 71-76.
[23] SUI F, KANG Y, WU H, et al. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system[J]. Ecotoxicological and Environmental Safety, 2021, 225: 112764. doi: 10.1016/j.ecoenv.2021.112764
[24] 高义霞, 周向军, 张继, 等. 山药过氧化物酶的特性及抑制研究[J]. 食品工业科技, 2011, 32(7): 105-108.
[25] PANCHAL P, PREECE C, PENUELAS J, et al. Soil carbon sequestration by root exudates[J]. Trends in Plant Science, 2022, 27(8): 749-757. doi: 10.1016/j.tplants.2022.04.009
[26] 孙磊, 向平, 张智, 等. 潜流—表流复合人工湿地处理超TN含量废水[J]. 水处理技术, 2020, 46(4): 97-105.
[27] CHAI Y N, SCHACHTMA D P. Root exudates impact plant performance under abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80-91. doi: 10.1016/j.tplants.2021.08.003
[28] JIAO L, DING H, WANG L, et al. Bisphenol A effects on the chlorophyll contents in soybean at different growth stages[J]. Environmental Pollution, 2017, 223: 426-434. doi: 10.1016/j.envpol.2017.01.042
[29] ZHANG M, CAO T, NI L, et al. Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses[J]. Environmental and Experimental Botany, 2010, 68(1): 44-50. doi: 10.1016/j.envexpbot.2009.09.003
[30] 李晓红, 晏再生, 江和龙. 直流电场对沉水植物苦草(Vallisneria natans)生长的影响[J]. 湖泊科学, 2016, 28(5): 1023-1030.
[31] IMTIAZ M, ASHRAF M, RIZWAN M S, et al. Vanadium toxicity in chickpea (Cicer arietinum L. ) grown in red soil: Effects on cell death, ROS and antioxidative systems[J]. Ecotoxicological and Environmental Safety, 2018, 158: 139-144. doi: 10.1016/j.ecoenv.2018.04.022
[32] 陶正凯, 荆肇乾, 陈蕾, 等. 基于胁迫影响的人工湿地植物筛选研究进展[J]. 生态科学, 2019, 38(6): 184-189.
[33] 徐荣乐, 海热提. 塑料地膜对小麦种子萌发及幼苗抗氧化酶系统的影响[J]. 生态环境学报, 2010, 19(11): 2702-2707.
[34] 程扬, 刘子丹, 沈启斌, 等. 秸秆生物炭施用对玉米根际和非根际土壤微生物群落结构的影响[J]. 生态环境学报, 2018, 27(10): 1870-1877.
[35] DAVEY M W, STALS E, PANIS B, et al. High-throughput determination of malondialdehyde in plant tissues[J]. Analytical Biochemistry, 2005, 347(2): 201-207. doi: 10.1016/j.ab.2005.09.041
[36] ELNAGGA A, ELNAGGA A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review[J]. Journal of Environmental Management, 2019, 241: 458-467.
[37] YUAN L, RICHARDSON C J, HO M, et al. Stress responses of aquatic plants to silver nanoparticles[J]. Environmental Science & Technology, 2018, 52(5): 2558-2565.
[38] WANG Q, XU L, GUO D, et al. The continuous application of biochar in field: effects on P fraction, P sorption and release[J]. Chemosphere, 2021, 263: 128084. doi: 10.1016/j.chemosphere.2020.128084
[39] WU L, ZHANG S, WANG J, et al. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: adsorption, column and field tests[J]. Environmental Pollution, 2020, 261: 114223. doi: 10.1016/j.envpol.2020.114223
[40] 王冬, 刘畅, 李檬, 等. 含腐殖酸还原菌的污泥降解底泥中溶解性有机质[J]. 环境工程, 2019, 37(6): 150-154.
[41] 王磊, 胡效卿, 张卓伦, 等. 不同水深和基质下苦草(Vallisneria natans)的生理生态适应策略[J]. 生态学杂志, 2021, 40(8): 2421-2430.
[42] LI W, ZHOU J, DING H, et al. Low-dose biochar added to sediment improves water quality and promotes the growth of submerged macrophytes[J]. Science of the Total Environment, 2020, 742: 140602. doi: 10.1016/j.scitotenv.2020.140602
[43] MALECKA A, KONKOLEWSKA A, HANC A, et al. Insight into the phytoremediation capability of brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activity[J]. International Journal of Molecular Sciences. 2019, 20(18): 4355.
[44] 魏秋, 王春荣, 宋俊学, 等. 硫/铁硫化物自养反硝化脱氮除磷研究进展[J]. 工业水处理, 2022, 42(12): 10-16.
[45] 骆凤, 张义, 韩帆, 等. 硅酸盐矿物麦饭石对沉水植物苦草(Vallisneria spiralis)生长的促进效应[J]. 湖泊科学, 2020, 32(4): 999-1007.