[1] 杨敏, 孙永利, 郑兴灿, 等. 不同外加碳源的反硝化效能与技术经济性分析[J]. 给水排水, 2010, 46(11): 125-128. doi: 10.3969/j.issn.1002-8471.2010.11.032
[2] 徐雨楠, 转润, 张光明, 等. 剩余污泥破解作为污水脱氮内生碳源的研究进展[J]. 现代化工, 2018, 38(7): 36-39+41.
[3] 侯银萍, 蔡斌斌, 张安龙, 等. 不同预处理方法促进剩余污泥破胞及厌氧消化产气效率的研究[J]. 陕西科技大学学报, 2022, 40(2): 13-19+27. doi: 10.3969/j.issn.1000-5811.2022.02.003
[4] 谢波, 郭亮, 李小明, 等. 三种预处理方法对污泥的破解效果[J]. 中国环境科学, 2008(5): 417-421. doi: 10.3321/j.issn:1000-6923.2008.05.007
[5] 朱赵冉, 黄显怀, 唐玉朝, 等. 低速搅拌球磨破解剩余污泥高效释放碳源[J]. 中国给水排水, 2021, 37(13): 1-6.
[6] XU X Z, CAO D, WANG Z H, et al. Study on ultrasonic treatment for municipal sludge[J]. Ultrasonics Sonochemistry, 2019, 57: 29-37. doi: 10.1016/j.ultsonch.2019.05.008
[7] WANG Z J, WANG W, ZHANG X H, et al. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor[J]. Journal of Hazardous Materials, 2009, 162(2): 799-803.
[8] 李琪. 低碳源系统剩余污泥碳源化特性研究[D]. 重庆大学, 2014.
[9] 蒋轶锋, 刘志豪. 污泥碱解与臭氧化预处理效能研究[J]. 水处理技术, 2020, 46(11): 41-45.
[10] 霍贞, 王芬, 季民. 污泥破解技术的研究与进展[J]. 工业水处理, 2005(9): 16-19. doi: 10.3969/j.issn.1005-829X.2005.09.005
[11] 郝赟. 低强度超声波/碱对剩余污泥破解机理的研究[D]. 天津大学, 2009.
[12] 刘昌, 曾萍, 宋永会, 等. 超声与碱预处理对剩余污泥磷及有机物释放的影响[J]. 环境科学学报, 2014, 34(5): 1276-1284.
[13] ŞAHINKAYA S, MEHMET F S, AHMET A. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods[J]. Water Science & Technology, 2012, 65(10): 1809-1816.
[14] ŞAHINKAYA S, MEHMET F S. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 197-206. doi: 10.1016/j.jiec.2012.08.002
[15] BAO H X, YANG H, ZHANG H, et al. Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system[J]. Environmental Research, San Diego:Academic Press Inc Elsevier Science, 2020, 180: 108863.
[16] CHU C P, CHANG B V, LIAO G S, et al. Observations on changes in ultrasonically treated waste-activated sludge[J]. Water Research, 2001, 35(4): 1038-1046. doi: 10.1016/S0043-1354(00)00338-9
[17] 刘永剑, 刘宇雷, 徐学信, 等. 超声/厌氧消化处理剩余污泥参数优化及机理研究[J]. 中国给水排水, 2022, 38(5): 84-90.
[18] LI H, JIN Y, MAHAR R, et al. Effects and model of alkaline waste activated sludge treatment[J]. Bioresource Technology, 2008, 99(11): 5140-5144. doi: 10.1016/j.biortech.2007.09.019
[19] LI X, PENG Y, LI B, et al. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities[J]. Chemosphere, 2017, 186: 864-872. doi: 10.1016/j.chemosphere.2017.08.017
[20] BUX M R. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion[J]. Journal of Environmental Sciences, 2009, 21(3): 279-284. doi: 10.1016/S1001-0742(08)62264-0
[21] UMA R R, ADISH K S, S K, et al. Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment[J]. Ultrasonics Sonochemistry, 2014(3).
[22] KUROKAWA M, KING P M, WU X, et al. Effect of sonication frequency on the disruption of algae[J]. Ultrasonics Sonochemistry, 2016, 31: 157-162. doi: 10.1016/j.ultsonch.2015.12.011
[23] KODA S, KIMURA T, KONDO T, et al. A standard method to calibrate sonochemical efficiency of an individual reaction system[J]. Ultrasonics Sonochemistry, 2003, 10(3): 149-156. doi: 10.1016/S1350-4177(03)00084-1
[24] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002.
[25] XIAO B Y, LIU C, LIU J X, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge[J]. Bioresource Technology, 2015, 196: 109-115. doi: 10.1016/j.biortech.2015.07.056
[26] TIAN X B, WANG C, Trzcinski A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences, 2015, 0313,27(3): 97-105.
[27] 康晓荣, 张光明, 刘亚利, 等. 碱调理超声破解污泥产酸及生物群落研究[J]. 中国给水排水, 2013, 29(7): 89-92. doi: 10.3969/j.issn.1000-4602.2013.07.024
[28] 肖本益, 阎鸿, 魏源送. 污泥热处理及其强化污泥厌氧消化的研究进展[J]. 环境科学学报, 2009, 29(4): 673-682. doi: 10.3321/j.issn:0253-2468.2009.04.001
[29] 李维维. 碳氮比对生物脱氮效果影响的试验研究[D]. 兰州交通大学, 2019.
[30] WANG Q H, KUNINOBU M, KAKIMOTO K, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment[J]. Bioresource Technology, 1999, 68(3): 309-313. doi: 10.1016/S0960-8524(98)00155-2
[31] LAW S Q K, HALIM R, SCALES P J, et al. Conversion and recovery of saponifiable lipids from microalgae using a nonpolar solvent via lipase-assisted extraction[J]. Bioresource Technology, 2018, 260: 338-347. doi: 10.1016/j.biortech.2018.03.129
[32] PARK J H, KANG H J, KIM H S, et al. Effects of alkali-treated sludge supplementation for enhanced biological phosphorus removal in a membrane bioreactor[J]. Fuel, Oxford:Elsevier Sci Ltd, 2019, 254: 115588.
[33] 曲红, 石雪颖, 聂泽兵, 等. 不同C/P下AOA-SBR工艺磷形态转化规律及污泥特性[J]. 中国环境科学, 2022, 42(1): 92-101. doi: 10.3969/j.issn.1000-6923.2022.01.011
[34] 赵婧婧, 姚重华, 王晓霞, 等. 超声波工作参数对污泥中磷释放的影响[J]. 环境工程学报, 2015, 9(2): 895-900. doi: 10.12030/j.cjee.20150264
[35] 占玲骅, 刘雪羽, 何国富, 等. 超声联合热碱预处理对剩余污泥厌氧消化的影响[J]. 环境污染与防治, 2017, 39(11): 1205-1208+1212.
[36] 薛玉伟, 季民, 李文彬. 超声破解污泥影响因素分析[J]. 环境工程学报, 2007(6): 118-122. doi: 10.3969/j.issn.1673-9108.2007.06.026
[37] ŞAHINKAYA S, MEHMET F S. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion[J]. Ultrasonics Sonochemistry, 2013, 20(1): 587-594. doi: 10.1016/j.ultsonch.2012.07.006
[38] 徐慧敏, 秦卫华, 李中林, 等. 超声联合热碱预处理促进剩余污泥中温厌氧消化研究[J]. 生态与农村环境学报, 2019, 35(1): 91-97. doi: 10.19741/j.issn.1673-4831.2018.0056
[39] 江云, 朱曙光, 欧阳匡中, 等. 超声破解对剩余污泥内含营养物及粒径的影响[J]. 环境工程学报, 2018, 12(5): 1303-1309. doi: 10.12030/j.cjee.201709034
[40] BABU R, CAPANNELLI G, COMITE A. Effect of different pretreatments on sludge solubilization and estimation of bioenergy potential[J]. Processes, Multidisciplinary Digital Publishing Institute, 2021, 9(8): 1382.