[1] 余涛, 蒋天宇, 刘旭, 等. 土壤重金属污染现状及检测分析技术研究进展 [J]. 中国地质, 2021, 48(2): 460-476. YU T, JIANG T Y, LIU X, et al. Research progress in current status of soil heavy metal pollution and analysis technology [J]. Geology in China, 2021, 48(2): 460-476(in Chinese).
[2] WU Y F, LI X, YU L, et al. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives [J]. Resources, Conservation and Recycling, 2022, 181: 106261. doi: 10.1016/j.resconrec.2022.106261
[3] 黎森, 王敦球, 于焕云. 铅-砷交互作用影响小白菜生长及铅砷积累的效应研究 [J]. 生态环境学报, 2019, 28(1): 170-180. LI S, WANG D Q, YU H Y. Effect of Pb and As interaction on the growth and As and Pb accumulation of Brassica campestris L. [J]. Ecology and Environmental Sciences, 2019, 28(1): 170-180(in Chinese).
[4] QIN Y H, TAO Y Q. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment [J]. Ecotoxicology and Environmental Safety, 2022, 248: 114293. doi: 10.1016/j.ecoenv.2022.114293
[5] FATOKI J O, BADMUS J A. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation [J]. Journal of Hazardous Materials Advances, 2022, 5: 100052. doi: 10.1016/j.hazadv.2022.100052
[6] FLORA G, GUPTA D, TIWARI A. Toxicity of lead: A review with recent updates [J]. Interdisciplinary Toxicology, 2012, 5(2): 47-58. doi: 10.2478/v10102-012-0009-2
[7] JONES E A, WRIGHT J M, RICE G, et al. Metal exposures in an inner-city neonatal population [J]. Environment International, 2010, 36(7): 649-654. doi: 10.1016/j.envint.2010.04.007
[8] World Health Organization. Agents Classified by the IARC Monographs, Volumes 1–132[EB/OL]. [2022-09-23].
[9] 汤亚云, 管凡荀, 高鹏飞, 等. 不同国家或组织动物源性食品中重金属限量标准的比较研究 [J]. 黑龙江畜牧兽医, 2022(14): 8-13+21. doi: 10.13881/j.cnki.hljxmsy.2021.04.0346 TANG Y Y, GUAN F X, GAO P F, et al. Comparative study on heavy metal limit standards of animal derived food in different countries or organizations [J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(14): 8-13+21(in Chinese). doi: 10.13881/j.cnki.hljxmsy.2021.04.0346
[10] FOWLER B A, WHITTAKER M H, LIPSKY M, et al. Oxidative stress induced by lead, cadmium and arsenic mixtures: 30-day, 90-day, and 180-day drinking water studies in rats: An overview [J]. Biometals, 2004, 17(5): 567-568. doi: 10.1023/B:BIOM.0000045740.52182.9d
[11] 钱学诗, 李勇, 钱壮壮, 等. 北亚热带东部次生阔叶林降水过程中的镉、铅、砷含量变化 [J]. 生态环境学报, 2022, 31(5): 979-989. QIAN X S, LI Y, QIAN Z Z, et al. Changes of cadmium, lead and arsenic contents during precipitation in the secondary broad-leaved forest in the eastern area of north subtropics, China [J]. Ecology and Environmental Sciences, 2022, 31(5): 979-989(in Chinese).
[12] 曲良, 谭海涛, 刘涛, 等. 北部湾铁山港附近海域水体和沉积物重金属分布特征及生态风险评价 [J]. 环境化学, 2023, 42(3): 757-768. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2022102606 QU L, TAN H T, LIU T, et al. Distribution characteristics and potential ecological risk of heavy metals in the seawater and sediment of Tieshan Port, Beibu Gulf [J]. Environmental Chemistry, 2023, 42(3): 757-768(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2022102606
[13] 杨小俊, 次仁德吉, 吴雪莲, 等. 铅—砷交互作用对青稞苗期生长及铅砷吸收积累的影响 [J]. 西南农业学报, 2022, 35(9): 2189-2196. YANG X J, CIRENDEJI, WU X L, et al. Effect of Pb-As interaction on highland barley growth and Pb-As uptake and accumulation at seedling stage [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2189-2196(in Chinese).
[14] CUI D, ZHANG P, LI H P, et al. The dynamic changes of arsenic biotransformation and bioaccumulation in muscle of freshwater food fish crucian carp during chronic dietborne exposure [J]. Journal of Environmental Sciences, 2021, 100: 74-81. doi: 10.1016/j.jes.2020.07.005
[15] LIU X S, WANG J M, HUANG Y W. Quantifying the effect of nano-TiO2 on the toxicity of lead on C. dubia using a two-compartment modeling approach [J]. Chemosphere, 2021, 263: 127958. doi: 10.1016/j.chemosphere.2020.127958
[16] GAO Y F, XIE Z C, ZHU J X, et al. Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: A toxicokinetics–toxicodynamics approach [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111788. doi: 10.1016/j.ecoenv.2020.111788
[17] GAO Y F, ZHANG Y, FENG J F, et al. Toxicokinetic−toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish [J]. Environmental Pollution, 2019, 251: 221-229. doi: 10.1016/j.envpol.2019.05.003
[18] HUANG C D, GE Y, SHEN Z Q, et al. Reveal the metal handling and resistance of earthworm Metaphire californica with different exposure history through toxicokinetic modeling [J]. Environmental Pollution, 2021, 289: 117954. doi: 10.1016/j.envpol.2021.117954
[19] WANG W X, TAN Q G. Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms [J]. Environmental Pollution, 2019, 252: 1561-1573. doi: 10.1016/j.envpol.2019.06.043
[20] OLLSON C J, SMITH E, HERDE P, et al. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead [J]. Chemosphere, 2017, 168: 658-666. doi: 10.1016/j.chemosphere.2016.11.010
[21] 冯剑丰, 高永飞, 朱景雪, 等. 毒代-毒效动力学模型及其在金属水生态风险评估中的应用研究进展 [J]. 环境工程, 2019, 37(11): 10-18,124. FENG J F, GAO Y F, ZHU J X, et al. Application of toxicokinetic-toxicodynamic models in aquatic ecological risk assessment for metals [J]. Environmental Engineering, 2019, 37(11): 10-18,124(in Chinese).
[22] 甘露菁, 荣菡, 杨丹, 等. 斑马鱼对铜、铅和镍的生物富集动力学研究 [J]. 中国食物与营养, 2019, 25(11): 25-29. GAN L J, RONG H, YANG D, et al. Bioaccumulation kinetics of Brachydanio rerio on copper, lead and nickel [J]. Food and Nutrition in China, 2019, 25(11): 25-29(in Chinese).
[23] 李欢, 张静丽, 张诗雨, 等. 四环素和砷对斑马鱼的联合毒性及机制 [J]. 中国环境科学, 2021, 41(7): 3371-3380. LI H, ZHANG J L, ZHANG S Y, et al. Combined toxicity and underlying mechanism of tetracycline and arsenic on zebrafish [J]. China Environmental Science, 2021, 41(7): 3371-3380(in Chinese).
[24] ADOLFSSON-ERICI M, ÅKERMAN G, JAHNKE A, et al. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests [J]. Chemosphere, 2012, 86(6): 593-599. doi: 10.1016/j.chemosphere.2011.10.024
[25] OECD. Test No. 417: Toxicokinetics, OECD Guidelines for the Testing of Chemicals, Section 4[M]. Paris: OECD Publishing, 2010.
[26] CHEN X, LI H Z, ZHANG J J, et al. Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression [J]. Environmental Pollution, 2016, 218: 1005-1013. doi: 10.1016/j.envpol.2016.08.051
[27] 祁红学, 李慧珍, 游静. 被动加标在水生生态风险评价中的应用——以多氯联苯分配系数的测定为例 [J]. 生态毒理学报, 2015, 10(2): 45-55. QI H X, LI H Z, YOU J. Application of passive dosing in aquatic ecological risk assessment: A case study of measuring partition coefficients of polychlorinated biphenyls [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 45-55(in Chinese).
[28] LI H Z, YOU J, WANG W X. Multi-compartmental toxicokinetic modeling of fipronil in tilapia: Accumulation, biotransformation and elimination [J]. Journal of Hazardous Materials, 2018, 360: 420-427. doi: 10.1016/j.jhazmat.2018.07.085
[29] CHEN L Z, SONG D D, ZHANG W, et al. The dynamic changes of arsenic bioaccumulation and antioxidant responses in the marine medaka Oryzias melastigma during chronic exposure [J]. Aquatic Toxicology, 2019, 212: 110-119. doi: 10.1016/j.aquatox.2019.05.001
[30] GAO Y F, KANG L L, ZHANG Y, et al. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish [J]. Chemosphere, 2019, 220: 774-782. doi: 10.1016/j.chemosphere.2018.12.197
[31] ZHANG Y, FENG J F, GAO Y F, et al. Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity [J]. Environmental Pollution, 2019, 249: 959-968. doi: 10.1016/j.envpol.2019.03.115
[32] LIU F J, GENTLES A, THEODORAKIS C W. Arsenate and perchlorate toxicity, growth effects, and thyroid histopathology in hypothyroid zebrafish Danio rerio [J]. Chemosphere, 2008, 71(7): 1369-1376. doi: 10.1016/j.chemosphere.2007.11.036
[33] SARKAR S, MUKHERJEE S, CHATTOPADHYAY A, et al. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes [J]. Ecotoxicology and Environmental Safety, 2014, 107: 1-8. doi: 10.1016/j.ecoenv.2014.05.012
[34] BYEON E, KANG H M, YOON C, et al. Toxicity mechanisms of arsenic compounds in aquatic organisms [J]. Aquatic Toxicology, 2021, 237: 105901. doi: 10.1016/j.aquatox.2021.105901
[35] 李梓萌, 李肖乾, 张文慧, 等. 重金属复合污染对生物影响的研究进展 [J]. 环境化学, 2021, 40(11): 3331-3343. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021033107 LI Z M, LI X Q, ZHANG W H, et al. Research progress on the effects of heavy metal compound pollution on organisms [J]. Environmental Chemistry, 2021, 40(11): 3331-3343(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021033107
[36] MUTHUSAMY S, PENG C, NG J C. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells [J]. Chemosphere, 2016, 165: 41-51. doi: 10.1016/j.chemosphere.2016.08.137
[37] 邢胜男. 斑马鱼胚胎发育毒性试验评价重金属联合生物毒性[D]. 上海: 上海师范大学, 2016. XING S N. Evaluation of combined biotoxicity of heavy metals by zebrafish embryo development toxicity test[D]. Shanghai: Shanghai Normal University, 2016 (in Chinese).
[38] VELLINGER C, PARANT M, ROUSSELLE P, et al. Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex) [J]. Ecotoxicology, 2012, 21(7): 1817-1827. doi: 10.1007/s10646-012-0916-1
[39] VELLINGER C, GISMONDI E, FELTEN V, et al. Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses [J]. Aquatic Toxicology, 2013, 140/141: 106-116. doi: 10.1016/j.aquatox.2013.05.010
[40] MEHLER W T, DU J, LYDY M J, et al. Joint toxicity of a pyrethroid insecticide, cypermethrin, and a heavy metal, lead, to the benthic invertebrate Chironomus dilutus [J]. Environmental Toxicology and Chemistry, 2011, 30(12): 2838-2845. doi: 10.1002/etc.689
[41] LI X X, CUI X W, ZHANG X, et al. Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L. [J]. Journal of Hazardous Materials, 2020, 389: 121874. doi: 10.1016/j.jhazmat.2019.121874
[42] LIU X S, WANG J M, HUANG Y W. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic? [J]. Frontiers of Environmental Science & Engineering, 2022, 16(5): 59.
[43] BROERSE M, OORSPRONG H, van GESTEL C A M. Cadmium affects toxicokinetics of pyrene in the collembolan Folsomia candida [J]. Ecotoxicology, 2012, 21(3): 795-802. doi: 10.1007/s10646-011-0839-2
[44] STEEVENS J A, BENSON W H. Toxicokinetic interactions and survival of Hyalella azteca exposed to binary mixtures of chlorpyrifos, dieldrin, and methyl mercury [J]. Aquatic Toxicology, 2001, 51(4): 377-388. doi: 10.1016/S0166-445X(00)00127-2
[45] GARBINSKI L D, ROSEN B P, CHEN J. Pathways of arsenic uptake and efflux [J]. Environment International, 2019, 126: 585-597. doi: 10.1016/j.envint.2019.02.058
[46] MILLER D S, SHAW J R, STANTON C R, et al. MRP2 and acquired tolerance to inorganic arsenic in the kidney of killifish (Fundulus heteroclitus) [J]. Toxicological Sciences, 2007, 97(1): 103-110. doi: 10.1093/toxsci/kfm030
[47] JEONG C B, KIM H S, KANG H M, et al. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology [J]. Aquatic Toxicology, 2017, 185: 29-39. doi: 10.1016/j.aquatox.2017.01.013