[1] ÆSØY V, MAGNE E P, STENERSEN D, et al. LNG-fuelled engines and fuel systems for medium-speed engines in maritime applications[C]//SAE Technical Paper 2011-01-1998, 2011
[2] SCHINAS O B, BUTLER M A. Feasibility and commercial considerations of LNG-fueled ships[J]. Ocean Engineering, 2016, 122: 84-96. doi: 10.1016/j.oceaneng.2016.04.031
[3] INGEMAR N, MARCEL O. Development of a dual fuel technology for slow-speed engines[C]//第27届国际内燃机学会(CIMAC)大会论文集, 2013, 1-12
[4] LINDSTAD E, ESKELAND G S, RIALLAND A, et al. Decarbonizing maritime transport: The importance of engine technology and regulations for LNG to serve as a transition fuel[J]. Sustainability, 2020, 12(21): 1-19.
[5] IPCC. Climate change 2014: Synthesis report [R/OL]. [2021-01-10].https://www.cma.gov.cn/2011xzt/2014zt/20141103/2014050703/201411/P020141113358178198444.pdf
[6] 环境保护部会同质检总局, 船舶发动机排气污染物排放限值及测量方法(中国第一、二阶段): GB15097-2016 [S]. 北京. 中华人民共和国生态环境部, 2018
[7] SHI Y, PU J L, GAO L W, et al. Selective catalytic reduction of NOx with NH3 and CH4 over zeolite supported indium-cerium bimetallic catalysts for lean-burn natural gas engines[J]. Chemical Engineering Journal, 2020, 403(126394): 1-17.
[8] ALVA E, PACHECO M, COLÍN A, et al. Nitrogen oxides and methane treatment by non-thermal plasma[J]. Journal of Physics Conference, 2015, 591(012052): 1-7.
[9] HUU T P, GIL S, COSTA P D, et al. Plasma-catalytic hybrid reactor: Application to methane removal [J]. Catalysis Today, 2015: 86-92
[10] PAN H, GUO Y H, JIAN Y F, et al. Synergistic effect of non-thermal plasma on NOx reduction by CH4 over an In/H-BEA catalyst at low temperatures[J]. Energy Fuels, 2015, 29(8): 5282-5289. doi: 10.1021/acs.energyfuels.5b00864
[11] SHREKA M. 低温等离子体催化系统降低船用低压燃气发动机逃逸甲烷的研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[12] GHOLAMI R, STERE C, CHANSAI S, et al. Optimization of non-thermal plasma-assisted catalytic oxidation for methane emissions abatement as an exhaust aftertreatment technology[J]. Plasma Chemistry and Plasma Processing, 2022, 42(4): 709-730. doi: 10.1007/s11090-022-10253-3
[13] WEI L, PENG B, LI M, et al. Dynamic characteristics of positive pulsed dielectric barrier discharge for ozone generation in air[J]. Plasma Sci. Technol., 2016, 18(2): 147-156. doi: 10.1088/1009-0630/18/2/09
[14] 董冰岩, 李贞栋, 宿雅威, 等. 高压脉冲介质阻挡放电协同金属有机骨架材料催化剂去除氮氧化物的实验研究[J]. 电工技术学报, 2021, 36(13): 2740-2748. doi: 10.19595/j.cnki.1000-6753.tces.200891
[15] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重整特性影响的实验[J]. 电工技术学报, 2019, 34(6): 1329-1337.
[16] INNES W. Effect of nitrogen-oxide emissions on ozone levels in metropolitan regions[J]. Environmental Science & Technology, 1981, 15(8): 904-912.
[17] JEDRYCHOWSKI W, MAUGERI U, FLAK E. The effect of prolonged occupational exposure to the low concentrations of nitrogen oxides in combination with ammonia on chronic bronchitis and the lung function[J]. Giornale Italiano Di Medicina Del Lavoro, 1987, 9(3/4): 147-151.
[18] XIE H W, ZHANG Y. The research status of acid rain[J]. Advanced Materials Research, 2013, 726-731: 4033-4036. doi: 10.4028/www.scientific.net/AMR.726-731.4033
[19] HUEBERT B. Computer modelling of photochemical smog formation [J]. 1974, 10(51): 644-645
[20] 王伟彬, 曹昌魁. 船舶减排满足IMO Tier Ⅲ 法规的探讨与实践[J]. 中国航海, 2017, 40(2): 108-111. doi: 10.3969/j.issn.1000-4653.2017.02.023
[21] 赵如金, 储金宇, 王瑞静, 等. 粉煤灰小球协同低温等离子体处理汽车尾气[J]. 高电压技术, 2008, 34(3): 517-520. doi: 10.13336/j.1003-6520.hve.2008.03.003
[22] 刘彤, 于琴琴, 王卉, 等. 等离子体与催化剂协同催化CH4选择性还原脱硝反应[J]. 催化学报, 2011, 32(9): 1502-1507.
[23] 刘飞. 低温等离子体氧化NO的实验研究[D]. 武汉: 武汉理工大学, 2018
[24] CAI Y K, LU L, LI P. Study on the effect of structure parameters on NO oxidation in DBD reactor under oxygen-enriched condition[J]. Applied Sciences, 2020, 10(19): 2-16.
[25] 米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24): 244-256. doi: 10.19595/j.cnki.1000-6753.tces.160818
[26] DENYSENKO I, YU M Y, XU S. Effect of plasma nonuniformity on electron energy distribution in a dusty plasma [J]. J. Phys. D: Appl. Phys. 2005, 38(3): 403-408
[27] CAI Y K, LV L, LU X P. The Effects of inner electrode diameter on the performance of dielectric barrier discharge reactor for desulfurization and denitrification[J]. IEEE Transactions on Plasma Science, 2021, 49(2): 786-793. doi: 10.1109/TPS.2021.3049126
[28] FRIDMAN A. Plasma Chemistry[J]. Plasma Chemistry, 2008, 29(1): 355-362.
[29] PENETRANTE B M, HSIAO M C, MERRITT B T, et al. Pulsed corona and dielectric-barrier discharge processing of NO in N2[J]. Appl. Phys. Lett. 1996, 68, 3719-3721
[30] YOSHIDA K, GOTO S G, TAGASHIRA H, et al. Electron transport properties and collision cross sections in CF[J]. Journal of Applied Physics. 2002, 91(5), 2637-2647
[31] Community database, Available online: www. lxcat. net, retrieved on October 25, 2022.https://nl.lxcat.net/home/
[32] TRINITI database, Available online: www. lxcat. net, retrieved on June 26, 2020.https://nl.lxcat.net/home/
[33] Itikawa database, Available online: www. lxcat. net, retrieved on June 26, 2020.https://nl.lxcat.net/home/
[34] ZHAO G B, GARIKIPATI S, HU X, ARGYLE M, et al. The effect of oxygen on nonthermal-plasma reactions of dilute nitrogen oxide mistures in N2[J]. AIChE Journal. 2005, 51(6), 1813-1821
[35] KOSSYI I, KOSTINSKY A, MATVEYEV A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Sci. Technol. 1992, 1(3), 207-220
[36] GUERRA V, SÁ P, LOUREIRO J. Role played by the N2 (A3Σu+) metastable in stationary N2 and N2-O2 discharges[J]. Journal of Physics D Applied Physics, 2001, 34(12): 1745-1755. doi: 10.1088/0022-3727/34/12/301
[37] PENG B, JIANG N, YAO X, et al. Experimental and numerical studies of primary and secondary streamers in a pulsed surface dielectric barrier discharge[J]. Journal of Physics D:Applied Physics, 2019, 52(32): 1-35.
[38] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94. doi: 10.19595/j.cnki.1000-6753.tces.2017.08.009
[39] LATHAM R V. High Voltage Vacuum Insulation[M]. Academic Press, 1981
[40] NEMMICH S, TILMATINE A, DEY Z, HAMMADI N, et al. Optimal Sizing of a DBD Ozone Generator Using Response Surface Modeling[J]. Ozone: Sci. Eng. 2015, 37(1), 3-8
[41] NUR M. Plasma Technology Research and Its Applications: developing in the Faculty of Science and Mathematics Diponegoro University[C]// International Seminar on New Paradigm and Innovation on Natural Sciences and Its Application. 2013, 3
[42] SUN B, WANG T, YANG B, et al. Effect of Electrode Configuration on NO Removal in a Coaxial Dielectric Barrier Discharge Reactor[J]. Journal of Chemical Engineering of Japan. 2013, 46(11), 746-750
[43] WANG L N, ZHONG W L, ZHU A M, et al. Numerical simulation of OH and HO2 radicals in dielectric barrier discharge plasmas[J]. Acta Physico-Chimica Sinica, 2008, 24(8): 1400-1404. doi: 10.3866/PKU.WHXB20080813