[1] |
IPCC, 2018. Special report on global warming of 1.5°C[R]. UK: Cambridge University Press, 2018.
|
[2] |
王兆夺, 祝超伟, 于东生. 全球气候变化背景下对“温室效应”的思考[J]. 辽宁师范大学学报(自然科学版), 2017, 40(3): 407 − 414.
|
[3] |
MIKHAYLOV A, MOISEEV N, ALESHIN K, et al. Global climate change and greenhouse effect[J]. Entrepreneurship and sustainability issues, 2020, 7(4): 2897 − 2913. doi: 10.9770/jesi.2020.7.4(21)
|
[4] |
胡海超. 《京都议定书》与应对气候变化的国际博弈研究[D]. 兰州: 西北师范大学, 2013.
|
[5] |
丁治平. 《京都议定书》下温室气体减排机制研究[D]. 上海: 华东政法大学, 2008.
|
[6] |
ARROW K. Global climate change: A challenge to policy[J]. The economists’ voice, 2007, 4(3): 1 − 5.
|
[7] |
ZHAO Q . A review of pathways to carbon neutrality from renewable energy and carbon capture[J]. E3S web of conferences, 2021, 245(1–4): 01018.
|
[8] |
GAO Y. China's response to climate change issues after Paris Climate Change Conference[J]. Advances in climate change research, 2016, 7(4): 235 − 240. doi: 10.1016/j.accre.2016.10.001
|
[9] |
唐雯, 柴洪, 谈存峰. 甘肃省产业结构与能源消费关系研究——基于VAR模型[J]. 中国能源, 2021, 43(5): 73 − 80. doi: 10.3969/j.issn.1003-2355.2021.05.011
|
[10] |
卢昌彩. 绿色革命与国际合作的范式: “碳达峰、碳中和”与“一带一路”双赢选择[J]. 决策咨询, 2022(1): 76 − 82. doi: 10.3969/j.issn.1006-3404.2022.01.021
|
[11] |
闫新杰, 孙慧. 基于STIRPAT模型的新疆“碳达峰”预测与实现路径研究[J]. 新疆大学学报(自然科学版)(中英文), 2022, 39(2): 206 − 212.
|
[12] |
关敏捷, 袁艳红, 冉木希, 等. 基于STIRPAT模型的山西省能源碳排放影响因素及峰值预测[J]. 中国煤炭, 2021, 47(9): 48 − 55. doi: 10.3969/j.issn.1006-530X.2021.09.007
|
[13] |
宋鹏, 张慧敏, 毛显强. 面向碳达峰目标的重庆市碳减排路径[J]. 中国环境科学, 2022, 42(3): 1446 − 1455. doi: 10.3969/j.issn.1000-6923.2022.03.051
|
[14] |
席细平, 谢运生, 王贺礼, 等. 基于IPAT模型的江西省碳排放峰值预测研究[J]. 江西科学, 2014, 32(6): 768 − 772. doi: 10.13990/j.issn1001-3679.2014.06.005
|
[15] |
聂锐, 张涛, 王迪. 基于IPAT模型的江苏省能源消费与碳排放情景研究[J]. 自然资源学报, 2010, 25(9): 1557 − 1564. doi: 10.11849/zrzyxb.2010.09.015
|
[16] |
芦颖, 李旭东, 杨正业. 贵州省能源碳排放现状及峰值预测[J]. 环境科学与技术, 2018, 41(11): 173 − 180. doi: 10.19672/j.cnki.1003-6504.2018.11.028
|
[17] |
郑松华. 基于随机前沿模型的中国西部地区碳排放效率评价研究[J]. 柴达木开发研究, 2014(1): 37 − 39. doi: 10.3969/j.issn.1005-6718.2014.01.012
|
[18] |
董棒棒, 李莉, 唐洪松, 等. 环境规制、FDI与能源消费碳排放峰值预测——以西北五省为例[J]. 干旱区地理, 2019, 42(3): 689 − 697.
|
[19] |
QIANG L, GU A, FEI T, et al. Peaking China's CO2 emissions: trends to 2030 and mitigation potential[J]. Energies, 2017, 10(2): 209. doi: 10.3390/en10020209
|
[20] |
GREEN F, STERN N. China's changing economy: implications for its carbon dioxide emissions[J]. Climate policy, 2017, 17(1-4): 423 − 442.
|
[21] |
焦文献, 陈兴鹏. 基于IPAT等式的甘肃省能源消费碳排放特征分析及情景预测[J]. 干旱区资源与环境, 2012, 26(10): 180 − 184. doi: 10.13448/j.cnki.jalre.2012.10.020
|
[22] |
闫楷若. 甘肃省能源消费结构研究——基于动态偏离份额模型[J]. 甘肃科学学报, 2015, 27(4): 114 − 117. doi: 10.16468/j.cnki.issn1004-0366.2015.04.025
|
[23] |
钱娇. 甘肃省服务业发展碳排放变动及影响因素分析[D]. 兰州: 西北师范大学, 2015.
|
[24] |
DANISH, ZCAN B, ULUCAK R. An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses[J]. Nuclear engineering and technology, 2020, 53(6): 2056 − 2065.
|
[25] |
CHONTANAWAT J. Decomposition analysis of CO2 emission in ASEAN: An extended IPAT model[J]. Energy procedia, 2018, 153: 186 − 190. doi: 10.1016/j.egypro.2018.10.057
|
[26] |
HWANG Y, UM J, SCHLUTER S. Evaluating the mutual relationship between IPAT/Kaya identity index and ODIAC-based GOSAT fossil-fuel CO2 flux: Potential and constraints in utilizing decomposed variables[J]. International journal of environmental research and public health, 2020, 17(16): 5976. doi: 10.3390/ijerph17165976
|
[27] |
KASHEM M, RAHMAN M. CO2 emissions and development indicators: a causality analysis for Bangladesh[J]. Environmental processes, 2019, 6(2): 433 − 455. doi: 10.1007/s40710-019-00365-y
|
[28] |
EHRLICH P, HOLDREN J. Impact of population growth[J]. Science, 1971, 171(3977): 1212 − 1217. doi: 10.1126/science.171.3977.1212
|
[29] |
LI M, LIU H, GENG G, et al. Anthropogenic emission inventories in China: a review[J]. National science review, 2017, 4(6): 834 − 866. doi: 10.1093/nsr/nwx150
|
[30] |
ZHENG B, TONG D, LI M, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric chemistry and physics, 2018, 18: 14095 − 14111. doi: 10.5194/acp-18-14095-2018
|
[31] |
IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventory [R]. UK: Cambridge University Press, 2006.
|
[32] |
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory [R]. UK: Cambridge University Press, 2019.
|
[33] |
国家统计局工业交通统计司. 中国能源统计年鉴[M]. 北京: 中国统计出版社, 2001.
|
[34] |
朱智文, 张娟娟. 甘肃省能源消费、产业结构和经济增长的关系[J]. 开发研究, 2015(1): 84 − 88. doi: 10.13483/j.cnki.kfyj.2015.01.020
|
[35] |
王陆新, 王越, 王永臻. 碳达峰碳中和背景下我国能源发展多情景研究[J]. 石油科技论坛, 2022, 41(1): 78 − 86. doi: 10.3969/j.issn.1002-302x.2022.01.010
|
[36] |
刘飞, 关键, 祁志福, 等. 燃煤电厂碳捕集、利用与封存技术路线选择[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 1 − 13.
|
[37] |
LI R, WANG Q, LIU Y, et al. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes[J]. Sustainable production and consumption, 2021, 7(27): 1149 − 1164.
|