[1] |
NIEGEL C, MATYSIK F-M. Analytical methods for the determination of arsenosugars—A review of recent trends and developments[J]. Analytica Chimica Acta, 2010, 657(2): 83-99. doi: 10.1016/j.aca.2009.10.041
|
[2] |
ROSENWASSER S, GRAFF VAN CREVELD S, SCHATZ D, et al. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment[J]. Proceedings of the National Academy of Sciences, 2014, 111(7): 2740-2745. doi: 10.1073/pnas.1319773111
|
[3] |
丁腾达, 倪婉敏, 张建英. 硅藻重金属污染生态学研究进展[J]. 应用生态学报, 2012, 23(3): 857-866. doi: 10.13287/j.1001-9332.2012.0117
|
[4] |
PAPRY R I, ISHII K, MAMUN M A A, et al. Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity[J]. Scientific Reports, 2019, 9(1): 10226. doi: 10.1038/s41598-019-46551-8
|
[5] |
BARRAL-FRAGA L, MORIN S, ROVIRA M D M, et al. Short-term arsenic exposure reduces diatom cell size in biofilm communities[J]. Environmental Science and Pollution Research, 2016, 23(5): 4257-4270. doi: 10.1007/s11356-015-4894-8
|
[6] |
HASEGAWA H, PAPRY R I, IKEDA E, et al. Freshwater phytoplankton: Biotransformation of inorganic arsenic to methylarsenic and organoarsenic[J]. Scientific Reports, 2019, 9(1): 12074. doi: 10.1038/s41598-019-48477-7
|
[7] |
PAN Y, SUBBA RAO D V, MANN K H, et al. Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. I. Batch culture studies[J]. Marine Ecology Progress Series, 1996, 131(1-3): 225-233.
|
[8] |
SAPRIEL G, QUINET M, HEIJDE M, et al. Genome-wide transcriptome analyses of Silicon metabolism in phaeodactylum tricornutum reveal the multilevel regulation of Silicic acid transporters[J]. PLOS ONE, 2009, 4(10): e7458. doi: 10.1371/journal.pone.0007458
|
[9] |
MACHADO M, VAZ M G M V, BROMKE M A, et al. Metabolic stability of freshwater Nitzschia palea strains under silicon stress associated with triacylglycerol accumulation[J]. Algal Research, 2021, 60: 102554. doi: 10.1016/j.algal.2021.102554
|
[10] |
KIM TIAM S, LAVOIE I, DOOSE C, et al. Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress[J]. Ecotoxicology, 2018, 27(6): 675-688. doi: 10.1007/s10646-018-1945-1
|
[11] |
ZHOU B, MA J, CHEN F, et al. Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum[J]. Environmental Pollution, 2020, 262: 114331. doi: 10.1016/j.envpol.2020.114331
|
[12] |
MA J, ZHOU B, DUAN D, et al. Silicon limitation reduced the adsorption of cadmium in marine diatoms[J]. Aquatic Toxicology, 2018, 202: 136-144. doi: 10.1016/j.aquatox.2018.07.011
|
[13] |
SANTOS J, ALMEIDAl S F, FIGUEIRA E. Cadmium chelation by frustulins: a novel metal tolerance mechanism in Nitzschia palea (Kutzing) W. Smith[J]. Ecotoxicology, 2013, 22(1): 166-73. doi: 10.1007/s10646-012-1013-1
|
[14] |
WINTERMANS J F G M, DE MOTS A. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol[J]. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 1965, 109(2): 448-453. doi: 10.1016/0926-6585(65)90170-6
|
[15] |
QIN J, LEHR C R, YUAN C, et al. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga[J]. Proceedings of the National Academy of Sciences, 2009, 106(13): 5213-5217. doi: 10.1073/pnas.0900238106
|
[16] |
YE J, RENSING C, ROSEN B P, et al. Arsenic biomethylation by photosynthetic organisms[J]. Trends in Plant Science, 2012, 17(3): 155-162. doi: 10.1016/j.tplants.2011.12.003
|
[17] |
HUSSAIN M M, WANG J, BIBI I, et al. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae[J]. Journal of Hazardous Materials, 2021, 403.
|
[18] |
YIN X, WANG L, DUAN G, et al. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii[J]. Journal of Environmental Sciences, 2011, 23(7): 1186-1193. doi: 10.1016/S1001-0742(10)60492-5
|
[19] |
BOBROWICZ P, WYSOCKI R, OWSIANIK G, et al. Isolation of three contiguous genes, ACR1, ACR2 andACR3, involved in resistance to Arsenic compounds in the yeast Saccharomyces cerevisiae[J]. Yeast, 1997, 13(9): 819-828. doi: 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y
|
[20] |
王培培, 陈松灿, 朱永官, 等. 微生物砷甲基化及挥发研究进展[J]. 农业环境科学学报, 2018, 37(07): 1377-1385. doi: 10.11654/jaes.2018-0542
|
[21] |
XU D, SCHAUM C-E, LI B, et al. Acclimation and adaptation to elevated pCO2 increase arsenic resilience in marine diatoms[J]. The ISME Journal, 2021, 15(6): 1599-1613. doi: 10.1038/s41396-020-00873-y
|
[22] |
PATEL A, TIWARI S, PRASAD S M. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum[J]. Ecotoxicology and Environmental Safety, 2018, 157: 369-379. doi: 10.1016/j.ecoenv.2018.03.056
|
[23] |
ZHANG J, NI Y, DING T, et al. The role of humic acid in the toxicity of arsenite to the diatom Navicula sp[J]. Environmental Science and Pollution Research, 2014, 21(6): 4366-75. doi: 10.1007/s11356-013-2413-3
|
[24] |
MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931-9935. doi: 10.1073/pnas.0802361105
|
[25] |
ZHANG S, GENG L, FAN L, et al. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil[J]. Science of the Total Environment, 2020, 704.
|
[26] |
SHRESTHA ROSHAN P, HILDEBRAND M. Evidence for a regulatory role of diatom Silicon transporters in cellular Silicon responses[J]. Eukaryotic Cell, 2015, 14(1): 29-40. doi: 10.1128/EC.00209-14
|
[27] |
KIM TIAM S, FEUITET-MAZEL A, DELMAS F, et al. Development of q-PCR approaches to assess water quality: effects of cadmium on gene expression of the diatom Eolimna minima[J]. Water Research, 2012, 46(4): 934-42. doi: 10.1016/j.watres.2011.11.005
|