[1] WRIGHT G D. The antibiotic resistome: The nexus of chemical and genetic diversity [J]. Nature Reviews Microbiology, 2007, 5(3): 175-186. doi: 10.1038/nrmicro1614
[2] Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States[R]. USA, CDC, 2019
[3] World Health Organization. Antimicrobial resistance: a global report on surviellence[R]. WHO, 2014.
[4] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
[5] ORÚS P, GOMEZ-PEREZ L, LERANOZ S, et al. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products [J]. International Microbiology, 2015, 18(1): 51-59.
[6] REDER-CHRIST K, BENDAS G. Biosensor applications in the field of antibiotic research: A review of recent developments [J]. Sensors, 2011, 11(10): 9450-9466. doi: 10.3390/s111009450
[7] HALL B G, BARLOW M. Evolution of the serine beta-lactamases: Past, present and future [J]. Drug Resistance Updates:Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2004, 7(2): 111-123.
[8] D’COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient [J]. Nature, 2011, 477(7365): 457-461. doi: 10.1038/nature10388
[9] LARSEN J, RAISEN C L, BA X L, et al. Emergence of methicillin resistance predates the clinical use of antibiotics [J]. Nature, 2022, 602(7895): 135-141. doi: 10.1038/s41586-021-04265-w
[10] TELLO A, AUSTIN B, TELFER T C. Selective pressure of antibiotic pollution on bacteria of importance to public health [J]. Environmental Health Perspectives, 2012, 120(8): 1100-1106. doi: 10.1289/ehp.1104650
[11] ASLAM B, CHAUDHRY T H, ARSHAD M I, et al. Distribution and genetic diversity of multi-drug-resistant Klebsiella pneumoniae at the human-animal-environment interface in Pakistan [J]. Frontiers in Microbiology, 2022, 13: 898248. doi: 10.3389/fmicb.2022.898248
[12] 全国细菌耐药监测网. 2020年全国细菌耐药监测报告[R]. 2021. China Antimicrobial Resistance Surveillance System. 2020 National antimicrobial resistance surveillance report[R]. 2021 (in Chinese).
[13] MURRAY C J, IKUTA K S, SHARARA F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis [J]. The Lancet, 2022, 399(10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0
[14] ZHOU M, YU S, HONG B, et al. Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case [J]. Environmental Pollution, 2021, 268: 115854. doi: 10.1016/j.envpol.2020.115854
[15] HOSSAIN A, HABIBULLAH-AL-MAMUN M, NAGANO I, et al. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking [J]. Environmental Science and Pollution Research, 2022, 29(8): 11054-11075. doi: 10.1007/s11356-021-17825-4
[16] 杨基峰, 应光国, 赵建亮, 等. 配套养殖体系中部分抗生素的污染特征 [J]. 环境化学, 2015, 34(1): 54-59. doi: 10.7524/j.issn.0254-6108.2015.01.2014042302 YANG J F, YING G G, ZHAO J L, et al. Pollution characteristics of antibiotics in complete sets of farming system [J]. Environmental Chemistry, 2015, 34(1): 54-59(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014042302
[17] GAO P P, MAO D Q, LUO Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment [J]. Water Research, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004
[18] BRUNTON L A, DESBOIS A P, GARZA M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems [J]. Science of the Total Environment, 2019, 687: 1344-1356. doi: 10.1016/j.scitotenv.2019.06.134
[19] DONE H Y, VENKATESAN A K, HALDEN R U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? [J]. The AAPS Journal, 2015, 17(3): 513-524. doi: 10.1208/s12248-015-9722-z
[20] BOOPATHY R. Presence of Methicillin Resistant Staphylococcus aureus (MRSA) in sewage treatment plant [J]. Bioresource Technology, 2017, 240: 144-148. doi: 10.1016/j.biortech.2017.02.093
[21] 崔红. 污水厂中多重耐药菌的筛选及耐药基因转移机制的研究[D]. 哈尔滨: 哈尔滨师范大学, 2022. CUI H. Screening of multidrug resistant bacteria and study on the mechanism of drug resistance gene transfer in sewage treatment plant[D]. Harbin: Harbin Normal University, 2022 (in Chinese).
[22] 刘海洋. 污水中典型抗生素、耐药菌及耐药基因的分布及其电催化降解研究[D]. 长春: 东北师范大学, 2020. LIU H Y. Study on distribution and electrocatalytic degradation of typical antibiotics, antibiotic resistant bacteria and resistantce genes in wastewater[D]. Changchun: Northeast Normal University, 2020 (in Chinese).
[23] BÖRJESSON S, MATUSSEK A, MELIN S, et al. Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: An uncharted threat? [J]. Journal of Applied Microbiology, 2010, 108(4): 1244-1251. doi: 10.1111/j.1365-2672.2009.04515.x
[24] LOUDERMILK E M, KOTAY S M, BARRY K E, et al. Tracking Klebsiella pneumoniae carbapenemase gene as an indicator of antimicrobial resistance dissemination from a hospital to surface water via a municipal wastewater treatment plant [J]. Water Research, 2022, 213: 118151. doi: 10.1016/j.watres.2022.118151
[25] YONEDA I, ROZANAH U N, NISHIYAMA M, et al. Detection and genetic analysis of Escherichia coli from Tonle Sap Lake and its tributaries in Cambodia: Spatial distribution, seasonal variation, pathogenicity, and antimicrobial resistance [J]. Environmental Pollution, 2022, 315: 120406. doi: 10.1016/j.envpol.2022.120406
[26] 赵晓祥, 杨莲, 程晨, 等. 上海水体中抗生素抗性基因的分布特征 [J]. 安全与环境学报, 2018, 18(3): 1191-1197. doi: 10.13637/j.issn.1009-6094.2018.03.066 ZHAO X X, YANG L, CHENG C, et al. Distributive situation of the antibiotic resistance genes in the surface water bodies in Shanghai [J]. Journal of Safety and Environment, 2018, 18(3): 1191-1197(in Chinese). doi: 10.13637/j.issn.1009-6094.2018.03.066
[27] 柏晓辉, 代琳, 李根山, 等. 新安江流域水体抗生素耐药菌分布状况研究 [J]. 环境科学与技术, 2022, 45(8): 80-86,99. doi: 10.19672/j.cnki.1003-6504.0605.22.338 BAI X H, DAI L, LI G S, et al. Distribution characteristics of antibiotic-resistant bacteria in Xin’anjiang River Basin [J]. Environmental Science & Technology, 2022, 45(8): 80-86,99(in Chinese). doi: 10.19672/j.cnki.1003-6504.0605.22.338
[28] ANTHONY E T, OJEMAYE M O, OKOH O O, et al. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement [J]. Environmental Pollution, 2020, 263: 113791. doi: 10.1016/j.envpol.2019.113791
[29] 李娟, 魏源送, 陈倩. 北京地区畜禽养殖场周边蔬菜地生食蔬菜抗生素耐药基因(ARGs)的赋存特性 [J]. 环境化学, 2018, 37(4): 625-635. doi: 10.7524/j.issn.0254-6108.2017083004 LI J, WEI Y S, CHEN Q. Occurrence of antibiotic resistance genes (ARGs) carried by raw vegetables adjacent to the livestock and poultry feedlots in Beijing [J]. Environmental Chemistry, 2018, 37(4): 625-635(in Chinese). doi: 10.7524/j.issn.0254-6108.2017083004
[30] LOOFT T, JOHNSON T A, ALLEN H K, et al. In-feed antibiotic effects on the swine intestinal microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1691-1696. doi: 10.1073/pnas.1120238109
[31] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment [J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016
[32] REINTHALER F F, POSCH J, FEIERL G, et al. Antibiotic resistance of E. coli in sewage and sludge [J]. Water Research, 2003, 37(8): 1685-1690. doi: 10.1016/S0043-1354(02)00569-9
[33] RAHUBE T O, MARTI R, SCOTT A, et al. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest [J]. Applied and Environmental Microbiology, 2014, 80(22): 6898-6907. doi: 10.1128/AEM.02389-14
[34] UDIKOVIC-KOLIC N, WICHMANN F, BRODERICK N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15202-15207. doi: 10.1073/pnas.1409836111
[35] 韩秉君, 沈仕洲, 杨凤霞, 等. 不同施肥模式对洱海流域稻田土壤中耐药基因污染的影响 [J]. 农业环境科学学报, 2021, 40(11): 2503-2512. doi: 10.11654/jaes.2021-1044 HAN B J, SHEN S Z, YANG F X, et al. Effects of different fertilization modes on the pollution of antibiotic resistance genes in paddy soils of Erhai Lake Basin [J]. Journal of Agro-Environment Science, 2021, 40(11): 2503-2512(in Chinese). doi: 10.11654/jaes.2021-1044
[36] 王凤青. 海参养殖池耐药菌的分析及五株海洋新菌的鉴定[D]. 济南: 山东大学, 2016. WANG F Q. The analysis of drug-resistance bacteria of sea cucumber culture ponds and polyphasic taxonomy analysis of five novel marine bacteria strains[D]. Jinan: Shandong University, 2016 .
[37] 成旭. 水产养殖场沉积物中细菌群落和抗生素抗性基因的组成、丰度和消除研究[D]. 杨凌: 西北农林科技大学, 2022. CHENG X. Study on the composition, abundance, elimination of bacterial communities and antibiotic resistance genes from the aquaculture sediments[D]. Yangling: Northwest A & F University, 2022.
[38] LI L Y, WANG Q, BI W J, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes [J]. Environmental Science & Technology, 2020, 54(7): 3900-3908.
[39] KOZAJDA A, JEŻAK K, KAPSA A. Airborne Staphylococcus aureus in different environments-a review [J]. Environmental Science and Pollution Research, 2019, 26(34): 34741-34753. doi: 10.1007/s11356-019-06557-1
[40] GAO X L, SHAO M F, WANG Q, et al. Airborne microbial communities in the atmospheric environment of urban hospitals in China [J]. Journal of Hazardous Materials, 2018, 349: 10-17. doi: 10.1016/j.jhazmat.2018.01.043
[41] 邱婉月, 夏雨荷, 龚林, 等. 2018—2021年武汉市3家医院不同科室病房空气环境中的耐药菌污染 [J]. 卫生研究, 2022, 51(4): 617-623. doi: 10.19813/j.cnki.weishengyanjiu.2022.04.020 QIU W Y, XIA Y H, GONG L, et al. Antibiotic-resistant bacteria contamination in the air of different departments in hospital [J]. Journal of Hygiene Research, 2022, 51(4): 617-623(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2022.04.020
[42] FRIESE A, SCHULZ J, ZIMMERMANN K, et al. Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in Turkey and broiler barns and contamination of air and soil surfaces in their vicinity [J]. Applied and Environmental Microbiology, 2013, 79(8): 2759-2766. doi: 10.1128/AEM.03939-12
[43] MADSEN A M, MOSLEHI-JENABIAN S, ISLAM M Z, et al. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants [J]. Environmental Research, 2018, 160: 282-291. doi: 10.1016/j.envres.2017.10.001
[44] MOON K W, HUH E H, JEONG H C. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea [J]. Environmental Monitoring and Assessment, 2014, 186(4): 2111-2120. doi: 10.1007/s10661-013-3521-8
[45] Smith D J, Ravichandar J D, Jain S, et al. Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA aircraft bioaerosol collector (ABC) [J]. Frontiers in Microbiology, 2018, 9: 1752. doi: 10.3389/fmicb.2018.01752
[46] 李鹏. 机舱空气耐药基因及耐药细菌的污染特征研究[D]. 天津: 天津大学, 2018. LI P. Characteristics of antibiotic resistant genes and resistant bacteria in the air environment of cabin[D]. Tianjin: Tianjin University, 2018 .
[47] SHEN X X, JIN G Q, ZHAO Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment [J]. Science of the Total Environment, 2020, 711: 134626. doi: 10.1016/j.scitotenv.2019.134626
[48] MIRANDA C D, ZEMELMAN R. Antibiotic resistant bacteria in fish from the concepción bay, Chile [J]. Marine Pollution Bulletin, 2001, 42(11): 1096-1102. doi: 10.1016/S0025-326X(01)00093-5
[49] Al-BAHRY S N, MAHMOUD I Y, Al-BELUSHI K I A, et al. Coastal sewage discharge and its impact on fish with reference to antibiotic resistant enteric bacteria and enteric pathogens as bio-indicators of pollution [J]. Chemosphere, 2009, 77(11): 1534-1539. doi: 10.1016/j.chemosphere.2009.09.052
[50] 张健, 朱秋华, 聂长丽, 等. 辽宁部分地区海产品多药耐药菌污染情况调查[C]//中国食品科学技术学会第十七届年会摘要集. 西安, 2020: 78-79. ZHANG J, ZHU Q H, NIE C L, et al. Investigation on contamination of multi-drug resistant bacteria in seafood products in Liaoning Province[C] // Abstracts of the 17th Annual Meeting of the Chinese Institute of Food Science and Technology. Xi’an, 2020: 78-79 .
[51] WHITE D G, ZHAO S, SUDLER R, et al. The isolation of antibiotic-resistant salmonella from retail ground meats [J]. The New England Journal of Medicine, 2001, 345(16): 1147-1154. doi: 10.1056/NEJMoa010315
[52] GODZISZEWSKA J, POGORZELSKA-NOWICKA E, BRODOWSKA M, et al. Detection in raw cow’s milk of coliform bacteria - reservoir of antibiotic resistance [J]. LWT, 2018, 93: 634-640. doi: 10.1016/j.lwt.2018.04.019
[53] KRAHULCOVÁ M, CVERENKÁROVÁ K, OLEJNÍKOVÁ P, et al. Characterization of antibiotic resistant coliform bacteria and resistance genes isolated from samples of smoothie drinks and raw milk [J]. Foods, 2022, 11(9): 1324. doi: 10.3390/foods11091324
[54] 左扬, 李田, 胡秀花, 等. 奶牛牧场养殖环境中产ESBL耐药菌的流行特征 [J]. 畜牧兽医学报, 2022, 53(11): 4027-4034. ZUO Y, LI T, HU X H, et al. Epidemiological characteristics of ESBL- producing resistant bacteria in dairy farming environment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4027-4034(in Chinese).
[55] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365-367. doi: 10.1126/science.1159483
[56] CHEN Y, CHEN X, ZHENG S, et al. Serotypes, genotypes and antimicrobial resistance patterns of human diarrhoeagenic Escherichia coli isolates circulating in southeastern China [J]. Clinical Microbiology and Infection, 2014, 20(1): 52-58. doi: 10.1111/1469-0691.12188
[57] ZHU G B, WANG X M, YANG T, et al. Air pollution could drive global dissemination of antibiotic resistance genes [J]. The ISME Journal, 2021, 15(1): 270-281. doi: 10.1038/s41396-020-00780-2
[58] ABU-ASHOUR J, LEE H. Transport of bacteria on sloping soil surfaces by runoff [J]. Environmental Toxicology, 2000, 15(2): 149-153. doi: 10.1002/(SICI)1522-7278(2000)15:2<149::AID-TOX11>3.0.CO;2-O
[59] LEE D, TERTULIANO M, HARRIS C, et al. Salmonella survival in soil and transfer onto produce via splash events [J]. Journal of Food Protection, 2019, 82(12): 2023-2037.
[60] ABU-ASHOUR J, JOY D M, LEE H, et al. Transport of microorganisms through soil [J]. Water, Air, and Soil Pollution, 1994, 75(1): 141-158.
[61] 张昱, 杨敏, 王春艳, 等. 生产过程中抗生素与抗药基因的排放特征、环境行为及控制 [J]. 环境化学, 2015, 34(1): 1-8. doi: 10.7524/j.issn.0254-6108.2015.01.2014111303 ZHANG Y, YANG M, WANG C Y, et al. Antibiotics, antibiotic resistance genes, pollutant discharge characteristics, horizontal transfer mechanism, pollution control technology [J]. Environmental Chemistry, 2015, 34(1): 1-8(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014111303
[62] KAPER J B, NATARO J P, MOBLEY H L T. Pathogenic Escherichia coli [J]. Nature Reviews Microbiology, 2004, 2(2): 123-140. doi: 10.1038/nrmicro818
[63] XU H, CHEN Z Y, HUANG R Y, et al. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers [J]. Environmental Science & Technology, 2021, 55(15): 10462-10470.
[64] ZHENG F, BI Q F, GILES M, et al. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization [J]. Environmental Science & Technology, 2021, 55(1): 423-432.
[65] WANG H T, CHI Q Q, ZHU D, et al. Arsenic and sulfamethoxazole increase the incidence of antibiotic resistance genes in the gut of earthworm [J]. Environmental Science & Technology, 2019, 53(17): 10445-10453.
[66] COLLIS R M, BIGGS P J, BURGESS S A, et al. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments [J]. Frontiers in Microbiology, 2022, 13: 960748. doi: 10.3389/fmicb.2022.960748
[67] BOEV C, KISS E. Hospital-acquired infections: Current trends and prevention [J]. Critical Care Nursing Clinics of North America, 2017, 29(1): 51-65. doi: 10.1016/j.cnc.2016.09.012
[68] KOLLEF M H, TORRES A, SHORR A F, et al. Nosocomial infection [J]. Critical Care Medicine, 2021, 49(2): 169-187. doi: 10.1097/CCM.0000000000004783
[69] AGABA P, TUMUKUNDE J, TINDIMWEBWA J V B, et al. Nosocomial bacterial infections and their antimicrobial susceptibility patterns among patients in Ugandan intensive care units: A cross sectional study [J]. BMC Research Notes, 2017, 10(1): 349. doi: 10.1186/s13104-017-2695-5
[70] GRISARU-SOEN G, SWEED Y, LERNER-GEVA L, et al. Nosocomial bloodstream infections in a pediatric intensive care unit: 3-year survey [J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2007, 13(6): CR251-CR257.
[71] World Health Organization. World health statistics overview 2019: monitoring health for the SDGs, sustainable development goals[R]. World Health Organization, 2019.
[72] GRUNDMANN H, BÄRWOLFF S, TAMI A, et al. How many infections are caused by patient-to-patient transmission in intensive care units? [J]. Critical Care Medicine, 2005, 33(5): 946-951. doi: 10.1097/01.CCM.0000163223.26234.56
[73] McGRATH E J, ASMAR B I. Nosocomial infections and multidrug-resistant bacterial organisms in the pediatric intensive care unit [J]. The Indian Journal of Pediatrics, 2011, 78(2): 176-184. doi: 10.1007/s12098-010-0253-4
[74] CHENG K P, HE M, SHU Q, et al. Analysis of the risk factors for nosocomial bacterial infection in patients with COVID-19 in a tertiary hospital [J]. Risk Management and Healthcare Policy, 2020, 13: 2593-2599. doi: 10.2147/RMHP.S277963
[75] ZHANG Y Z, DU M M, JOHNSTON J M, et al. Incidence of healthcare-associated infections in a tertiary hospital in Beijing, China: Results from a real-time surveillance system [J]. Antimicrobial Resistance & Infection Control, 2019, 8(1): 145.
[76] LEMMEN S W, HÄFNER H, ZOLLDANN D, et al. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment [J]. Journal of Hospital Infection, 2004, 56(3): 191-197. doi: 10.1016/j.jhin.2003.12.004
[77] BHALLA A, PULTZ N J, GRIES D M, et al. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients [J]. Infection Control and Hospital Epidemiology, 2004, 25(2): 164-167. doi: 10.1086/502369
[78] TSOLAKI V, MANTZARLIS K, MPAKALIS A, et al. Ceftazidime-avibactam to treat life-threatening infections by carbapenem-resistant pathogens in critically ill mechanically ventilated patients [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(3): e02320-e02319.
[79] ZHENG G H, ZHANG J X, WANG B, et al. Ceftazidime-avibactam in combination with in vitro non-susceptible antimicrobials versus ceftazidime-avibactam in monotherapy in critically ill patients with carbapenem-resistant Klebsiella pneumoniae infection: A retrospective cohort study [J]. Infectious Diseases and Therapy, 2021, 10(3): 1699-1713. doi: 10.1007/s40121-021-00479-7
[80] VENA A, GIACOBBE D R, CASTALDO N, et al. Clinical experience with ceftazidime-avibactam for the treatment of infections due to multidrug-resistant gram-negative bacteria other than carbapenem-resistant Enterobacterales [J]. Antibiotics, 2020, 9(2): 71. doi: 10.3390/antibiotics9020071
[81] 国家药品监督管理局. 国家药监局批准康替唑胺片上市[EB/OL].[2021-06-21].
[82] LI J M, FENG S S, LIU X, et al. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria[J]. Frontiers in Pharmacology, 2022, 13: 837907.
[83] TIWARI V, TIWARI D, PATEL V, et al. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii [J]. Microbial Pathogenesis, 2017, 110: 345-351. doi: 10.1016/j.micpath.2017.07.013
[84] LIN T H, HUANG S H, WU C C, et al. Inhibition of Klebsiella pneumoniae growth and capsular polysaccharide biosynthesis by fructus mume [J]. Evidence- Based Complementary and Alternative Medicine:ECAM, 2013, 2013: 621701.
[85] JI F, WANG C, WANG H M, et al. Tetrabromobisphenol A (TBBPA) exhibits specific antimicrobial activity against Gram-positive bacteria without detectable resistance [J]. Chemical Communications, 2017, 53(25): 3512-3515. doi: 10.1039/C7CC00613F
[86] CHEN B L, JI F, WANG C, et al. Capture and elimination of Staphylococcus aureus based on Langmuir–Blodgett MnO2 nanowire monolayer promotes infected wound healing [J]. Journal of Materials Chemistry B, 2019, 7(26): 4198-4206. doi: 10.1039/C9TB00394K
[87] QU X H, YANG H T, JIA B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomaterialia, 2020, 117: 400-417. doi: 10.1016/j.actbio.2020.09.041
[88] LI Y, LIU L N, WAN P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250-263. In vitro and in vivo evaluations
[89] MONTEFUSCO-PEREIRA C V, FORMICOLA B, GOES A, et al. Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149: 12-20. doi: 10.1016/j.ejpb.2020.01.013
[90] PENG H B, XIE B B, YANG X H, et al. Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA [J]. Chemical Communications, 2020, 56(58): 8115-8118. doi: 10.1039/D0CC02522D
[91] WNOROWSKA U, FIEDORUK K, PIKTEL E, et al. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications [J]. Journal of Nanobiotechnology, 2020, 18(1): 3. doi: 10.1186/s12951-019-0566-z
[92] LU N, WANG L Q, LV M, et al. Graphene-based nanomaterials in biosystems [J]. Nano Research, 2019, 12(2): 247-264. doi: 10.1007/s12274-018-2209-3
[93] TORRES-MENDIETA R, NGUYEN N H A, GUADAGNINI A, et al. Growth suppression of bacteria by biofilm deterioration using silver nanoparticles with magnetic doping [J]. Nanoscale, 2022, 14(48): 18143-18156. doi: 10.1039/D2NR03902H
[94] TU Y S, LI P, SUN J J, et al. Remarkable antibacterial activity of reduced graphene oxide functionalized by copper ions [J]. Advanced Functional Materials, 2021, 31(13): 2008018. doi: 10.1002/adfm.202008018
[95] 梁思思, 李珺峤, 石磊, 等. 多重PCR法检测与分析鱼塘生态系统大肠杆菌的耐药基因与整合子 [J]. 食品工业科技, 2012, 33(23): 202-205,210. doi: 10.13386/j.issn1002-0306.2012.23.001 LIANG S S, LI J Q, SHI L, et al. Detection and analysis of antibiotic resistance genes and integron of Escherichia coli isolated from fish pond ecological constellation by mutiplex PCR [J]. Science and Technology of Food Industry, 2012, 33(23): 202-205,210(in Chinese). doi: 10.13386/j.issn1002-0306.2012.23.001
[96] 张博. 城市污水中肠杆菌的抗生素耐药性和多种耐药基因的检测[D]. 哈尔滨: 东北农业大学, 2013. ZHANG B. Detection of antibiotic resistance and various resistance genes in Enterobacteriaceae isolated from the urban sewage[D]. Harbin: Northeast Agricultural University, 2013 (in Chinese).
[97] MUSSI M A, LIMANSKY A S, VIALE A M. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: Natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins [J]. Antimicrobial Agents and Chemotherapy, 2005, 49(4): 1432-1440. doi: 10.1128/AAC.49.4.1432-1440.2005
[98] PADILLA E, LLOBET E, DOMÉNECH-SÁNCHEZ A, et al. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence [J]. Antimicrobial Agents and Chemotherapy, 2010, 54(1): 177-183. doi: 10.1128/AAC.00715-09
[99] WOODFORD N, ELLINGTON M J. The emergence of antibiotic resistance by mutation [J]. Clinical Microbiology and Infection:the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2007, 13(1): 5-18. doi: 10.1111/j.1469-0691.2006.01492.x
[100] ZHU L J, CHEN X Y, HOU P F. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii [J]. Journal of Clinical Laboratory Analysis, 2019, 33(8): e22976.
[101] LEE A S, de LENCASTRE H, GARAU J, et al. Methicillin-resistant Staphylococcus aureus [J]. Nature Reviews Disease Primers, 2018, 4(1): 1-23.
[102] CHRISTAKI E, MARCOU M, TOFARIDES A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence [J]. Journal of Molecular Evolution, 2020, 88(1): 26-40. doi: 10.1007/s00239-019-09914-3
[103] MUNITA J M, ARIAS C A. Mechanisms of antibiotic resistance[M]//Virulence Mechanisms of Bacterial Pathogens. Washington, DC, USA: ASM Press, 2016: 481-511.
[104] BLAIR J M A, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance [J]. Nature Reviews Microbiology, 2015, 13(1): 42-51. doi: 10.1038/nrmicro3380
[105] KARLSSON H L, GUSTAFSSON J, CRONHOLM P, et al. Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size [J]. Toxicology Letters, 2009, 188(2): 112-118. doi: 10.1016/j.toxlet.2009.03.014