[1] LEE H, HUR J, SHIN H. Photochemical and microbial transformation of particulate organic matter depending on its source and size, Science of The Total Environment, 2022, 857(2): 159506.
[2] FANG T H, WANG C W. Dissolved and particulate phosphorus species partitioning and distribution in the Danshuei River Estuary, Northern Taiwan[J]. Marine Pollution Bulletin, 2019, 151.
[3] LI X, ZHOU Y, LIU G, et al. Mechanisms of the photochemical release of phosphate from resuspended sediments under solar irradiation[J]. Science of the Total Environment, 2017, 595: 779-786. doi: 10.1016/j.scitotenv.2017.04.039
[4] TAN M, LIU S, CHEN N, et al. Hydroxyl radicals induced mineralization of organic carbon during oxygenation of ferrous mineral-organic matter associations: Adsorption versus coprecipitation[J]. Science of the Total Environment, 2022, 816.
[5] WANG Y, YU W, CHANG Z, et al. Effects of dissolved organic matter on the adsorption of norfloxacin on a sandy soil (fraction) from the Yellow River of Northern China[J]. Science of the Total Environment, 2022, 848(2): 157495.
[6] MIN G, SIMONEIT B, GANTAR M, et al. Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades[J]. Chemosphere, 2008, 70(2): 224-236.
[7] AMON R M W, BEENER R. Bacterial utilization of different size classes of dissolved organic matter[J]. Limnology and Oceanography, 1996, 41(1): 41-51. doi: 10.4319/lo.1996.41.1.0041
[8] ROMER-CASTILLO C, SARMENTO H, ALBAREZ-SALGADO, et al. Production of chromophoric dissolved organic matter by marine phytoplankton[J]. Limnology & Oceanography, 2010, 55(3): 446-454.
[9] MOORE J C, BERLOW E L, COLEMAN D C, et al. Detritus, trophic dynamics and biodiversity[J]. Ecology Letters, 2010, 7(7): 584-600.
[10] PISANI O, YAMASHITA Y, JAFFE R. Photo-dissolution of flocculent, detrital material in aquatic environments: Contributions to the dissolved organic matter pool[J]. Water Research, 2011, 45(13): 3836-3844. doi: 10.1016/j.watres.2011.04.035
[11] HU B, WANG P, WANG C, et al. Photogeochemistry of particulate organic matter in aquatic systems: A review[J]. Science of The Total Environment, 2022, 806: 150467. doi: 10.1016/j.scitotenv.2021.150467
[12] LEENHEER J A, CROUE J P. Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter[J]. Environmental Science and Technology, 2003, 37(1): 18A-26A. doi: 10.1021/es032333c
[13] JEANNEAU L, ROWLAND R, INAMDAR S. Molecular fingerprinting of particulate organic matter as a new tool for its source apportionment: changes along a headwater drainage in coarse, medium and fine particles as a function of rainfalls[J]. Biogeosciences Discussions, 2018, 15(4): 1-26.
[14] MOPPER K, STUBBINS A, RITCHIE J D, et al. Advanced instrumental Approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy[J]. Chemical Reviews, 2007, 107(2): 419-442. doi: 10.1021/cr050359b
[15] AMIOTTE-SUCHET P, LINGLOIS N, LEVEQUE J, et al. 13C composition of dissolved organic carbon in upland forested catchments of the Morvan Mountains (France): Influence of coniferous and deciduous vegetation.[J]. Journal of Hydrology, 2007, 335(3-4): 354-363. doi: 10.1016/j.jhydrol.2006.12.002
[16] ANGRADI T R. Trophic Linkages in the Lower Colorado River: Multiple Stable Isotope Evidence[J]. Journal of the North American Benthological Society, 1994, 13(4): 479-495. doi: 10.2307/1467845
[17] PETERSON B J, HOWARTH R W. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt‐marsh estuaries of Sapelo Island, Georgia 1[J]. Limnology and Oceanography, 1987, 32(6): 1195-1213. doi: 10.4319/lo.1987.32.6.1195
[18] TOMING K, TUVIKENE L, VILBASTE S, et al. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment[J]. Limnology and Oceanography, 2013, 58(4): 1259-1270. doi: 10.4319/lo.2013.58.4.1259
[19] LAMBERT T, PIERSON-WICKMANN A C, GRUAU G, et al. Carbon isotopes as tracers of dissolved organic carbon sources and water pathways in headwater catchments[J]. Journal of Hydrology, 2011, 402(3-4): 228-238. doi: 10.1016/j.jhydrol.2011.03.014
[20] BIANCHI T S, FILLEY T, DRIA K, et al. Temporal variability in sources of dissolved organic carbon in the lower Mississippi river[J]. Geochimica Et Cosmochimica Acta, 2004, 68(5): 959-967. doi: 10.1016/j.gca.2003.07.011
[21] FRY B. Natural stable carbon isotope tag traces Texas shrimp migrations[J]. Fish Bull, 1981, 79(2): 337-345.
[22] SCHWARCZ H P. Some theoretical aspects of isotope paleodiet studies[J]. Journal of archaeological science, 1991, 18(3): 261-275. doi: 10.1016/0305-4403(91)90065-W
[23] PHILLIPS D L, GREGG J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3
[24] MOORE J W, SEMMENS B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480. doi: 10.1111/j.1461-0248.2008.01163.x
[25] PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: coping with too much variation[J]. PloS one, 2010, 5(3): e9672. doi: 10.1371/journal.pone.0009672
[26] PARNELL A C, PHILLIPS D L, BEARHOP S, et al. Bayesian stable isotope mixing models[J]. Environmetrics, 2013, 24(6): 387-399.
[27] STOCK B C, JACKSON A L, WARD E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6(4).
[28] 王毛兰, 张丁苓, 赖建平, 等. 鄱阳湖水体悬浮有机质碳氮同位素分布特征及来源探讨[J]. 中国环境科学, 2014, 34(9): 2342-2350.
[29] 陈吉吉, 徐蘇士, 赵靓, 等. 北京密云水库流域水体夏季POM浓度及来源分析[J]. 地球与环境, 2021, 49(2): 157-163.
[30] 茅昌平, 肖衡, 王帅, 等. 三峡库区表层沉积物有机碳、氮同位素特征及对有机质来源的指示[J/OL]. 水资源保护: 1-13[2023-03-06]. http://kns.cnki.net/kcms/detail/32.1356.TV.20221026.1622.008.html.
[31] 季宁宁, 刘永, 王圣瑞. 洱海悬浮颗粒物和表层沉积物有机碳氮同位素来源特征及水质指示意义[J]. 湖泊科学, 2022, 34(1): 118-133.
[32] 岳龙飞, 李洪波, 董丽, 等. 白洋淀入淀河流溶解有机物沿程变化特征及来源解析[J/OL]. 环境工程技术学报: 1-14[2023-03-06]. http://kns.cnki.net/kcms/detail/11.5972.X.20221209.1407.001.html.
[33] 张敏, 宫兆宁, 赵文吉, 等. 近30年来白洋淀湿地景观格局变化及其驱动机制[J]. 生态学报, 2016, 36(15): 4780-4791.
[34] 王荣欣, 温胜芳, 单保庆, 等. 白洋淀水生植物腐解水质效应与元素去向动态平衡[J]. 环境科学学报, 2022, 42(10): 332-341.
[35] 季恺悦, 李琦, 单保庆, 等. 白洋淀沼泽区与开阔水域区颗粒物组分特征与沉降通量研究[J]. 环境科学学报, 2022, 42(8): 271-281.
[36] 张杨, 许梦雅, 张超, 等. 白洋淀村落水域沉积物中营养元素和重金属分布特征及风险评价[J]. 环境科学学报, 2021, 41(10): 4074-4085.
[37] 胡珊珊, 郑红星, 刘昌明, 等. 气候变化和人类活动对白洋淀上游水源区径流的影响[J]. 地理学报, 2012, 67(1): 62-70.
[38] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 254-284
[39] 王雯雯, 郑丙辉, 郑朔方, 等. 呼伦湖水体悬浮颗粒物中有机质的赋存特征及来源解析[J]. 环境科学研究, 2021, 34(3): 558-566.
[40] 唐艳凌, 章光新. 基于稳定同位素示踪的流域颗粒有机物质来源辨析[J]. 中国环境科学, 2010, 30(9): 1257-1267.
[41] 李慧垠, 王广, 季宏兵, 江用彬. 北京水源地水体中颗粒有机质的碳氮同位素研究[J]. 环境科学学报, 2011, 31(12): 2663-2671.
[42] 谭慧娟, 夏晓玲, 吴川, 张全发. 基于碳稳定同位素示踪的金水河颗粒有机碳来源辨析[J]. 生态学报, 2014, 34(19): 5445-5452.
[43] 肖化云, 刘丛强. 氮同位素示踪贵州红枫湖河流季节性氮污染[J]. 地球与环境, 2004(1): 71-75.
[44] 张俊萍. 利用N、O同位素技术研究太滆运河中氮的分布特征及来源[D]. 淮南: 安徽理工大学, 2015.
[45] 赵永松. 庙岛群岛毗邻海域底栖食物网结构特征[D]. 上海: 上海海洋大学, 2022.
[46] 龙小虎. 台湾海峡中部夏季水动力情况及悬浮颗粒的分布与输运[D]. 舟山: 浙江海洋大学, 2018.
[47] 尹迎身. 基于水质改善的水动力优化方案研究[D]. 郑州: 郑州大学, 2021.
[48] 张海涵, 王娜, 宗容容, 等. 水动力条件对藻类生理生态学影响的研究进展[J]. 环境科学研究, 2022, 35(1): 181-190.
[49] 李娜, 周绪申, 孙博闻, 等. 白洋淀浮游植物群落的时空变化及其与环境因子的关系[J]. 湖泊科学, 2020, 32(3): 772-783.
[50] 徐杰, 何萍, 刘存歧, 等. 白洋淀沉水植物群落时空变化及影响因素[J]. 环境科学研究, 2022, 35(7): 1658-1669.
[51] 沈会涛, 刘存歧. 白洋淀浮游植物群落及其与环境因子的典范对应分析[J]. 湖泊科学, 2008(6): 773-779.
[52] 林楚翘, 易雨君, 李春晖, 等. 白洋淀浮游生物群落动态变化与生物量模拟研究[J]. 水利水电技术, 2020, 51(12): 169-179.
[53] 周绪申, 李娜, 孙博闻, 等. 白洋淀浮游生物群落结构的季节变化及其与环境因子的关系[J]. 水利水电技术(中英文), 2021, 52(8): 110-119.
[54] 冀文豪, 郭匿春, 徐军, 等. 长江中游浅水湖泊沉积物碳氮同位素特征及其来源分析[J]. 水生态学杂志, 2018, 39(6): 8-15.
[55] KRULL E, HAYNES D, LAMONTAGNE S, et al. Changes in the chemistry of sedimentary organic matter within the Coorong over space and time[J]. Biogeochemistry, 2009, 92(1): 9-25.
[56] 易雨君, 林楚翘, 唐彩红. 1960s以来白洋淀水文、环境、生态演变趋势[J]. 湖泊科学, 2020, 32(5): 1333-1347+1226.
[57] 王荣欣. 白洋淀典型水生植物腐解水质变化特征与元素释放、归趋分析[D]. 郑州: 华北水利水电大学, 2022.
[58] 赵萱. 我国不同生态型湖泊沉积物有机质赋存形态及其与重金属相互作用研究[D]. 济南: 山东师范大学, 2012.
[59] 郭长城, 喻国华, 王国祥. 河流泥沙对污染河水中污染物的吸附特性研究[J]. 生态环境学报, 2006, 15(6): 1151-1155.
[60] JIN X, ZHANG W Q, et al. Characteristics of suspended particulate matter in a typical slow-moving river of northern China: Insight into its structure and motion behavior[J]. Chemosphere Environmental Toxicology & Risk Assessment, 2018.
[61] 王栋, 陈伯俭, 金鑫. 滦河不同季节悬浮颗粒物特征差异及原因解析[J]. 水电能源科学, 2021, 39(7): 76-80.
[62] 翟亮, 金鑫, 陈伯俭, 等. 河流水环境及水动力条件差异对悬浮颗粒物表观特征的影响[J]. 中国农村水利水电, 2022, 477(7): 50-54.