[1] WANG F, YANG C, LONG J Y, et al. Executive summary for the 2015 annual data report of the China kidney disease network (CK-NET) [J]. Kidney International, 2019, 95(3): 501-505. doi: 10.1016/j.kint.2018.11.011
[2] DOMINGUETI C P, DUSSE L M S, CARVALHO M D G, et al. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications [J]. Journal of Diabetes and Its Complications, 2016, 30(4): 738-745. doi: 10.1016/j.jdiacomp.2015.12.018
[3] SAGOO M K, GNUDI L. Diabetic nephropathy: An overview [J]. Methods in Molecular Biology, 2020, 2067: 3-7.
[4] LIU D W, LI Z Y, LIU Z S. Treatment of diabetic kidney disease: Research development, current hotspots and future directions [J]. Zhonghua Yi Xue Za Zhi, 2021, 101(10): 683-686.
[5] BONNER R, ALBAJRAMI O, HUDSPETH J, et al. Diabetic kidney disease [J]. Primary Care:Clinics in Office Practice, 2020, 47(4): 645-659. doi: 10.1016/j.pop.2020.08.004
[6] GÜLÜMSEK E, KEŞKEK Ş Ö. Direct medical cost of nephropathy in patients with type 2 diabetes [J]. International Urology and Nephrology, 2022, 54(6): 1383-1389. doi: 10.1007/s11255-021-03012-4
[7] HOU Y, GAO Y, ZHANG Y, et al. Interaction between ELMO1 gene polymorphisms and environment factors on susceptibility to diabetic nephropathy in Chinese Han population [J]. Diabetology & Metabolic Syndrome, 2019, 11: 97.
[8] LIU L, WU Q C, MIAO X Y, et al. Study on toxicity effects of environmental pollutants based on metabolomics: A review [J]. Chemosphere, 2022, 286: 131815. doi: 10.1016/j.chemosphere.2021.131815
[9] HUANG W H, LIN J L, LIN-TAN D T, et al. Environmental lead exposure accelerates progressive diabetic nephropathy in type II diabetic patients [J]. BioMed Research International, 2013, 2013: 742545.
[10] GRICE B A, NELSON R G, WILLIAMS D E, et al. Associations between persistent organic pollutants, type 2 diabetes, diabetic nephropathy and mortality [J]. Occupational and Environmental Medicine, 2017, 74(7): 521-527. doi: 10.1136/oemed-2016-103948
[11] EVERETT C J, THOMPSON O M. Dioxins, furans and dioxin-like PCBs in human blood: Causes or consequences of diabetic nephropathy? [J]. Environmental Research, 2014, 132: 126-131. doi: 10.1016/j.envres.2014.03.043
[12] GONG P, WANG P P, PI S H, et al. Proanthocyanidins protect against cadmium-induced diabetic nephropathy through p38 MAPK and Keap1/Nrf2 signaling pathways [J]. Frontiers in Pharmacology, 2022, 12: 801048. doi: 10.3389/fphar.2021.801048
[13] LAWRENCE S M, CORRIDEN R, NIZET V. The ontogeny of a neutrophil: Mechanisms of granulopoiesis and homeostasis [J]. Microbiology and Molecular Biology Reviews:MMBR, 2018, 82(1): e00057-e00017.
[14] TSAI H J, HUNG C H, WANG C W, et al. Associations among heavy metals and proteinuria and chronic kidney disease [J]. Diagnostics (Basel, Switzerland), 2021, 11(2): 282.
[15] RAMHARACK P, SOLIMAN M E S. Bioinformatics-based tools in drug discovery: The cartography from single gene to integrative biological networks [J]. Drug Discovery Today, 2018, 23(9): 1658-1665. doi: 10.1016/j.drudis.2018.05.041
[16] VAN J A D, SCHOLEY J W, KONVALINKA A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics [J]. Journal of the American Society of Nephrology:JASN, 2017, 28(4): 1050-1061. doi: 10.1681/ASN.2016091018
[17] TZIASTOUDI M, CHOLEVAS C, THEOHARIDES T C, et al. Meta-analysis and bioinformatics detection of susceptibility genes in diabetic nephropathy [J]. International Journal of Molecular Sciences, 2021, 23(1): 20. doi: 10.3390/ijms23010020
[18] VERGA J U, HUFF M, OWENS D, et al. Integrated genomic and bioinformatics approaches to identify molecular links between endocrine disruptors and adverse outcomes [J]. International Journal of Environmental Research and Public Health, 2022, 19(1): 574. doi: 10.3390/ijerph19010574
[19] RAVICHANDRAN J, KARTHIKEYAN B S, APARNA S R, et al. Network biology approach to human tissue-specific chemical exposome [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2021, 214: 105998. doi: 10.1016/j.jsbmb.2021.105998
[20] FILIPPI M D. Neutrophil transendothelial migration: Updates and new perspectives [J]. Blood, 2019, 133(20): 2149-2158. doi: 10.1182/blood-2018-12-844605
[21] ZHU Y Y, HUANG Y M, JI Q, et al. Interplay between extracellular matrix and neutrophils in diseases [J]. Journal of Immunology Research, 2021, 2021: 8243378.
[22] POTO R, CRISTINZIANO L, MODESTINO L, et al. Neutrophil extracellular traps, angiogenesis and cancer [J]. Biomedicines, 2022, 10(2): 431. doi: 10.3390/biomedicines10020431
[23] MASUCCI M T, MINOPOLI M, del VECCHIO S, et al. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis [J]. Frontiers in Immunology, 2020, 11: 1749. doi: 10.3389/fimmu.2020.01749
[24] FEIGERLOVÁ E, BATTAGLIA-HSU S F. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives [J]. Cytokine & Growth Factor Reviews, 2017, 37: 57-65.
[25] GEWIN L S. TGF-β and diabetic nephropathy: Lessons learned over the past 20 years [J]. The American Journal of the Medical Sciences, 2020, 359(2): 70-72. doi: 10.1016/j.amjms.2019.11.010
[26] CHEN Y L, QIAO Y C, XU Y, et al. Serum TNF-α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis [J]. Immunology Letters, 2017, 186: 52-58. doi: 10.1016/j.imlet.2017.04.003
[27] WINTER L, WONG L A, JERUMS G, et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease [J]. Frontiers in Endocrinology, 2018, 9: 225. doi: 10.3389/fendo.2018.00225
[28] PLIYEV B K, KALINTSEVA M V, ABDULAEVA S V, et al. Neutrophil microparticles modulate cytokine production by natural killer cells [J]. Cytokine, 2014, 65(2): 126-129. doi: 10.1016/j.cyto.2013.11.010
[29] HORIKOSHI S, FUKUDA N, TSUNEMI A, et al. Contribution of TGF-β1 and effects of gene silencer pyrrole-imidazole polyamides targeting TGF-β1 in diabetic nephropathy [J]. Molecules, 2020, 25(4): 950. doi: 10.3390/molecules25040950
[30] NJEIM R, AZAR W S, FARES A H, et al. NETosis contributes to the pathogenesis of diabetes and its complications [J]. Journal of Molecular Endocrinology, 2020, 65(4): R65-R76. doi: 10.1530/JME-20-0128
[31] PATHOMTHONGTAWEECHAI N, CHUTIPONGTANATE S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy [J]. Biomedicine & Pharmacotherapy, 2020, 131: 110655.
[32] NOWAK K, JABŁOŃSKA E, RATAJCZAK-WRONA W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells [J]. Environment International, 2019, 125: 350-364. doi: 10.1016/j.envint.2019.01.078
[33] BEZDECNY S A, ROTH R A, GANEY P E. Effects of 2, 2', 4, 4'-tetrachlorobiphenyl on granulocytic HL-60 cell function and expression of cyclooxygenase-2 [J]. Toxicological Sciences, 2005, 84(2): 328-334. doi: 10.1093/toxsci/kfi093
[34] FOWLER J, TSUI M T K, CHAVEZ J, et al. Methyl mercury triggers endothelial leukocyte adhesion and increases expression of cell adhesion molecules and chemokines [J]. Experimental Biology and Medicine , 2021, 246(23): 2522-2532. doi: 10.1177/15353702211033812
[35] KLEI L R, BARCHOWSKY A. Positive signaling interactions between arsenic and ethanol for angiogenic gene induction in human microvascular endothelial cells [J]. Toxicological Sciences, 2008, 102(2): 319-327. doi: 10.1093/toxsci/kfn003
[36] SHEARER J J, CALLAHAN C L, CALAFAT A M, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma [J]. JNCI:Journal of the National Cancer Institute, 2020, 113(5): 580-587.
[37] 李秀婷, 王军, 赵亮亮, 等. 环境内分泌干扰物与糖尿病发病关联的研究进展 [J]. 环境与健康杂志, 2018, 35(5): 465-469. doi: 10.16241/j.cnki.1001-5914.2018.05.024 LI X T, WANG J, ZHAO L L, et al. Environmental endocrine disruptors and diabetes: A review of recent studies [J]. Journal of Environment and Health, 2018, 35(5): 465-469(in Chinese). doi: 10.16241/j.cnki.1001-5914.2018.05.024
[38] 王航, 张李一, 张蕴晖. 主要环境内分泌干扰物疾病负担的研究进展 [J]. 环境与职业医学, 2021, 38(9): 1033-1043. doi: 10.13213/j.cnki.jeom.2021.20565 WANG H, ZHANG L Y, ZHANG Y H. Research progress on disease burdens of major environmental endocrine disruptors [J]. Journal of Environmental and Occupational Medicine, 2021, 38(9): 1033-1043(in Chinese). doi: 10.13213/j.cnki.jeom.2021.20565
[39] KOVÁCS T, SZABÓ-MELEG E, ÁBRAHÁM I M. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression [J]. International Journal of Molecular Sciences, 2020, 21(9): 3177. doi: 10.3390/ijms21093177
[40] YANG C, LIU X W, LI J, et al. Association of serum vitamin D and estradiol levels with metabolic syndrome in rural women of northwest China: A cross-sectional study [J]. Metabolic Syndrome and Related Disorders, 2022, 20(3): 182-189. doi: 10.1089/met.2021.0120
[41] CIMMINO I, FIORY F, PERRUOLO G, et al. Potential mechanisms of bisphenol A (BPA) contributing to human disease [J]. International Journal of Molecular Sciences, 2020, 21(16): 5761. doi: 10.3390/ijms21165761
[42] SINGH S, LI S S L. Epigenetic effects of environmental chemicals bisphenol A and phthalates [J]. International Journal of Molecular Sciences, 2012, 13(8): 10143-10153. doi: 10.3390/ijms130810143
[43] HU J B, YANG S M, WANG Y, et al. Serum bisphenol A and progression of type 2 diabetic nephropathy: A 6-year prospective study [J]. Acta Diabetologica, 2015, 52(6): 1135-1141. doi: 10.1007/s00592-015-0801-5
[44] MORENO-GÓMEZ-TOLEDANO R, ARENAS M I, MUÑOZ-MORENO C, et al. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism [J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2022, 1868(1): 166296. doi: 10.1016/j.bbadis.2021.166296
[45] EDWARDS J R, PROZIALECK W C. Cadmium, diabetes and chronic kidney disease [J]. Toxicology and Applied Pharmacology, 2009, 238(3): 289-293. doi: 10.1016/j.taap.2009.03.007
[46] GOODMAN M, NARAYAN K M V, FLANDERS D, et al. Dose-response relationship between serum 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and diabetes mellitus: A Meta-analysis [J]. American Journal of Epidemiology, 2015, 181(6): 374-384. doi: 10.1093/aje/kwu307
[47] FARKHONDEH T, SAMARGHANDIAN S, AZIMI-NEZHAD M. The role of arsenic in obesity and diabetes [J]. Journal of Cellular Physiology, 2019, 234(8): 12516-12529. doi: 10.1002/jcp.28112
[48] YAN L J, ALLEN D C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism [J]. Biomolecules, 2021, 11(11): 1575. doi: 10.3390/biom11111575
[49] LI M Y, LIU X X, ZHANG Z L. Hyperglycemia exacerbates cadmium-induced glomerular nephrosis[J]. Toxicology and Industrial Health, 2021, 37(4): 074823372110378. .
[50] JAIMES E A, ZHOU M S, SIDDIQUI M, et al. Nicotine, smoking, podocytes, and diabetic nephropathy [J]. American Journal of Physiology. Renal Physiology, 2021, 320(3): F442-F453. doi: 10.1152/ajprenal.00194.2020
[51] RASKING L, VANBRABANT K, BOVÉ H, et al. Adverse Effects of fine particulate matter on human kidney functioning: A systematic review [J]. Environmental Health:a Global Access Science Source, 2022, 21(1): 24.
[52] LAN X Q, WEN H X, ASLAM R, et al. Nicotine enhances mesangial cell proliferation and fibronectin production in high glucose milieu via activation of Wnt/β-catenin pathway [J]. Bioscience Reports, 2018, 38(3): BSR20180100. doi: 10.1042/BSR20180100
[53] HUA P, FENG W G, JI S N, et al. Nicotine worsens the severity of nephropathy in diabetic mice: Implications for the progression of kidney disease in smokers [J]. American Journal of Physiology. Renal Physiology, 2010, 299(4): F732-F739. doi: 10.1152/ajprenal.00293.2010
[54] CHIN W S, CHANG Y K, HUANG L F, et al. Effects of long-term exposure to CO and PM2.5 on microalbuminuria in type 2 diabetes [J]. International Journal of Hygiene and Environmental Health, 2018, 221(4): 602-608. doi: 10.1016/j.ijheh.2018.04.009
[55] BAO C P, YANG X L, XU W L, et al. Diabetes mellitus and incidence and mortality of kidney cancer: A meta-analysis [J]. Journal of Diabetes and Its Complications, 2013, 27(4): 357-364. doi: 10.1016/j.jdiacomp.2013.01.004
[56] TSENG C H. Type 2 diabetes mellitus and kidney cancer risk: A retrospective cohort analysis of the national health insurance [J]. PLoS One, 2015, 10(11): e0142480. doi: 10.1371/journal.pone.0142480
[57] LUO Y M, LU Z Y, WAAGA-GASSER A M, et al. Modulation of calcium homeostasis may be associated with susceptibility to renal cell carcinoma in diabetic nephropathy rats [J]. Cancer Management and Research, 2020, 12: 9679-9689. doi: 10.2147/CMAR.S268402
[58] DONG Y Z, ZHAI W, XU Y F. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of diabetic nephropathy associated renal cell carcinoma [J]. Translational Andrology and Urology, 2020, 9(6): 2555-2571. doi: 10.21037/tau-19-911
[59] YANG J F, SHI S N, XU W H, et al. Screening, identification and validation of CCND1 and PECAM1/CD31 for predicting prognosis in renal cell carcinoma patients [J]. Aging, 2019, 11(24): 12057-12079. doi: 10.18632/aging.102540
[60] KROEZE S G C, BIJENHOF A M, BOSCH J L H R, et al. Diagnostic and prognostic tissuemarkers in clear cell and papillary renal cell carcinoma [J]. Cancer Biomarkers:Section A of Disease Markers, 2010, 7(6): 261-268.
[61] BERGLUND A, AMANKWAH E K, KIM Y C, et al. Influence of gene expression on survival of clear cell renal cell carcinoma [J]. Cancer Medicine, 2020, 9(22): 8662-8675. doi: 10.1002/cam4.3475
[62] WU F, WU S, GOU X. Identification of biomarkers and potential molecular mechanisms of clear cell renal cell carcinoma [J]. Neoplasma, 2018, 65(2): 242-252. doi: 10.4149/neo_2018_170511N342
[63] CHEN L, XIANG Z J, CHEN X R, et al. A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma [J]. Hereditas, 2020, 157(1): 38. doi: 10.1186/s41065-020-00152-y
[64] YOUNG M J, CHEN Y C, WANG S A, et al. Estradiol-mediated inhibition of Sp1 decreases miR-3194-5p expression to enhance CD44 expression during lung cancer progression [J]. Journal of Biomedical Science, 2022, 29(1): 3. doi: 10.1186/s12929-022-00787-1
[65] WEI P, RU D Q, LI X Q, et al. Exposure to environmental bisphenol A inhibits HTR-8/SVneo cell migration and invasion [J]. Journal of Biomedical Research, 2020, 34(5): 369-378. doi: 10.7555/JBR.34.20200013
[66] SHI H F, SUN X, KONG A Q, et al. Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111480. doi: 10.1016/j.ecoenv.2020.111480
[67] TOKAR E J, PERSON R J, SUN Y, et al. Chronic exposure of renal stem cells to inorganic arsenic induces a cancer phenotype [J]. Chemical Research in Toxicology, 2013, 26(1): 96-105. doi: 10.1021/tx3004054
[68] HUANG Y F, WANG Q Z, TANG Y, et al. Identification and validation of a cigarette smoke-related five-gene signature as a prognostic biomarker in kidney renal clear cell carcinoma [J]. Scientific Reports, 2022, 12: 2189. doi: 10.1038/s41598-022-06352-y