[1] CAI J, LI X P, LIU L J, et al. Coupling and coordinated development of new urbanization and agro-ecological environment in China [J]. Science of the Total Environment, 2021, 776: 145837. doi: 10.1016/j.scitotenv.2021.145837
[2] TANG W Z, PEI Y S, ZHENG H, et al. Twenty years of China's water pollution control: Experiences and challenges [J]. Chemosphere, 2022, 295: 133875. doi: 10.1016/j.chemosphere.2022.133875
[3] IBOURKI M, GHARBY S, GUILLAUME D, et al. Profiling of mineral elements and heavy metals in argan leaves and fruit by-products using inductively coupled plasma optical emission spectrometry and atomic absorption spectrometry [J]. Chemical Data Collections, 2021, 35: 100772. doi: 10.1016/j.cdc.2021.100772
[4] ZENG W, HU Z H, LUO J, et al. Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS [J]. Analytica Chimica Acta, 2022, 1191: 339361. doi: 10.1016/j.aca.2021.339361
[5] CHEN S X, WU M L, LV X W, et al. A novel resonance Rayleigh scattering assay for trace formaldehyde detection based on Ce-MOF probe and acetylacetone reaction [J]. Microchemical Journal, 2022, 179: 107501. doi: 10.1016/j.microc.2022.107501
[6] SHI L, YIN Y, ZHANG L C, et al. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review [J]. Applied Catalysis B:Environmental, 2019, 248: 405-422. doi: 10.1016/j.apcatb.2019.02.044
[7] MA W G, HAN D X, ZHOU M, et al. Ultrathin g-C3N4/TiO2composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity [J]. Chemical Science, 2014, 5(10): 3946-3951. doi: 10.1039/C4SC00826J
[8] CAI Y, KOZHUMMAL R, KÜBEL C, et al. Spatial separation of photogenerated electron–hole pairs in solution-grown ZnO tandem n–p core–shell nanowire arrays toward highly sensitive photoelectrochemical detection of hydrogen peroxide [J]. Journal of Materials Chemistry A, 2017, 5(27): 14397-14405. doi: 10.1039/C7TA01620D
[9] YANG L M, YIN X H, AN B, et al. Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy [J]. Analytical Chemistry, 2021, 93(3): 1709-1716. doi: 10.1021/acs.analchem.0c04308
[10] LIU X J, ZHAO Y C, LI F. Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing [J]. Biosensors and Bioelectronics, 2021, 173: 112832. doi: 10.1016/j.bios.2020.112832
[11] ZHAO Y C, XIANG J Z, CHENG H, et al. Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification [J]. Biosensors and Bioelectronics, 2021, 194: 113581. doi: 10.1016/j.bios.2021.113581
[12] GAI P P, GU C C, HOU T, et al. Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection [J]. Analytical Chemistry, 2017, 89(3): 2163-2169. doi: 10.1021/acs.analchem.6b05109
[13] CHEN S Y, LIU P, LI Y, et al. Engineering the doping amount of rare earth element erbium in CdWO4: Influence on the electrochemical performance and the application to the electrochemical detection of bisphenol A [J]. Journal of Electroanalytical Chemistry, 2022, 904: 115867. doi: 10.1016/j.jelechem.2021.115867
[14] LIN S, REN H, WU Z, et al. Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting [J]. Journal of Energy Chemistry, 2021, 59: 721-729. doi: 10.1016/j.jechem.2020.12.010
[15] YANG L W, ZHANG S, LIU X Q, et al. Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors [J]. Journal of Materials Chemistry. B, 2020, 8(35): 7880-7893. doi: 10.1039/D0TB01191F
[16] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts [J]. Advanced Materials, 2017, 29(20): 1601694. doi: 10.1002/adma.201601694
[17] BARD A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors [J]. Journal of Photochemistry, 1979, 10(1): 59-75. doi: 10.1016/0047-2670(79)80037-4
[18] CHIN X Y, PERUMAL A, BRUNO A, et al. Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade [J]. Energy & Environmental Science, 2018, 11(7): 1770-1778.
[19] ZHOU P, YU J G, JARONIEC M. All-solid-state Z-scheme photocatalytic systems [J]. Advanced Materials, 2014, 26(29): 4920-4935. doi: 10.1002/adma.201400288
[20] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nature Materials, 2006, 5(10): 782-786. doi: 10.1038/nmat1734
[21] ZOU Y J, SHI J W, MA D D, et al. Fabrication of g-C3N4/Au/C-TiO2 hollow structures as visible-light-driven Z-scheme photocatalysts with enhanced photocatalytic H2 evolution [J]. ChemCatChem, 2017, 9(19): 3752-3761. doi: 10.1002/cctc.201700542
[22] ZHAO W, LIU J C, DENG Z Y, et al. Facile preparation of Z-scheme CdSAgTiO2 composite for the improved photocatalytic hydrogen generation activity [J]. International Journal of Hydrogen Energy, 2018, 43(39): 18232-18241. doi: 10.1016/j.ijhydene.2018.08.026
[23] GAO H Q, ZHANG P, HU J H, et al. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation [J]. Applied Surface Science, 2017, 391: 211-217. doi: 10.1016/j.apsusc.2016.06.170
[24] WU F J, LI X, LIU W, et al. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions [J]. Applied Surface Science, 2017, 405: 60-70. doi: 10.1016/j.apsusc.2017.01.285
[25] LIU X, WANG Z Q, WU Y Z, et al. Integrating the Z-scheme heterojunction into a novel Ag2O@rGO@reduced TiO2 photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis [J]. Journal of Colloid and Interface Science, 2019, 538: 689-698. doi: 10.1016/j.jcis.2018.12.070
[26] YU J G, WANG S H, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air [J]. Physical Chemistry Chemical Physics:PCCP, 2013, 15(39): 16883-16890. doi: 10.1039/c3cp53131g
[27] WANG J W, QIU F G, WANG P, et al. Boosted bisphenol A and Cr(VI) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light [J]. Journal of Cleaner Production, 2021, 279: 123408. doi: 10.1016/j.jclepro.2020.123408
[28] ZHANG L J, LUO Z B, ZENG R J, et al. All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen [J]. Biosensors & Bioelectronics, 2019, 134: 1-7.
[29] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-Scheme Photocatalyst [J]. Advanced Materials, 2022, 34: 2107668. doi: 10.1002/adma.202107668
[30] FU J W, XU Q L, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst [J]. Applied Catalysis B:Environmental, 2019, 243: 556-565. doi: 10.1016/j.apcatb.2018.11.011
[31] LI Y F, ZHOU M H, CHENG B, et al. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. Journal of Materials Science & Technology, 2020, 56: 1-17.
[32] ZHANG X D, ZENG Y M, SHI W Y, et al. S-scheme heterojunction of core-shell biphase (1T-2H)-MoSe2/TiO2 nanorod arrays for enhanced photoelectrocatalytic production of hydrogen peroxide [J]. Chemical Engineering Journal, 2022, 429: 131312. doi: 10.1016/j.cej.2021.131312
[33] ZOU J, DENG W M, JIANG J Z, et al. Built-in electric field-assisted step-scheme heterojunction of carbon nitride-copper oxide for highly selective electrochemical detection of p-nonylphenol [J]. Electrochimica Acta, 2020, 354: 136658. doi: 10.1016/j.electacta.2020.136658
[34] GE L, HONG Q, LI H, et al. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing [J]. Advanced Functional Materials, 2019, 29(38): 1904000. doi: 10.1002/adfm.201904000
[35] WANG J, LV W X, WU J H, et al. Electropolymerization-induced positively charged phenothiazine polymer photoelectrode for highly sensitive photoelectrochemical biosensing [J]. Analytical Chemistry, 2019, 91(21): 13831-13837. doi: 10.1021/acs.analchem.9b03311
[36] WANG X Z, DONG S S, GAI P P, et al. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy [J]. Biosensors and Bioelectronics, 2016, 82: 49-54. doi: 10.1016/j.bios.2016.03.055
[37] SONG X, HOU T, LU F F, et al. Homogeneous photoelectrochemical biosensing via synergy of G-quadruplex/hemin catalysed reactions and the inner filter effect [J]. Chemical Communications (Cambridge, England), 2020, 56(12): 1811-1814. doi: 10.1039/C9CC09280C
[38] LIU X J, CHENG H, ZHAO Y C, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide [J]. Biosensors and Bioelectronics, 2022, 199: 113906. doi: 10.1016/j.bios.2021.113906
[39] WU J H, TANG Q T, LI Q, et al. Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticide Without Interferences of H2O2 and Color [J]. Analytical Chemistry, 2021, 93: 4084-4091. doi: 10.1021/acs.analchem.0c05257
[40] HU H L, HE C, GUO B G, et al. Ni hierarchical structures supported on titania nanowire arrays as efficient nonenzymatic glucose sensor [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(5): 3246-3251. doi: 10.1166/jnn.2020.17144
[41] XU W, YANG W K, GUO H K, et al. Constructing a TiO2/PDA core/shell nanorod array electrode as a highly sensitive and stable photoelectrochemical glucose biosensor [J]. RSC Advances, 2020, 10(17): 10017-10022. doi: 10.1039/C9RA10445C
[42] XIE Z, LIU X X, WANG W P, et al. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition [J]. Nano Energy, 2015, 11: 400-408. doi: 10.1016/j.nanoen.2014.11.024
[43] GAO J, HU J T, WANG Y F, et al. Fabrication of Z-Scheme TiO2/SnS2/MoS2 ternary heterojunction arrays for enhanced photocatalytic and photoelectrochemical performance under visible light [J]. Journal of Solid State Chemistry, 2022, 307: 122737. doi: 10.1016/j.jssc.2021.122737
[44] WANG Y Z, ZU M, LI S, et al. Dual modification of TiO2 nanorods for selective photoelectrochemical detection of organic compounds [J]. Sensors and Actuators B:Chemical, 2017, 250: 307-314. doi: 10.1016/j.snb.2017.04.113
[45] SHAO Z F, LIU W H, ZHANG Y F, et al. Insights on interfacial charge transfer across MoS2/TiO2-NTAs nanoheterostructures for enhanced photodegradation and biosensing&gas-sensing performance [J]. Journal of Molecular Structure, 2021, 1244: 131240. doi: 10.1016/j.molstruc.2021.131240
[46] SINGH V R, SINGH P K. A novel supramolecule-based fluorescence turn-on and ratiometric sensor for highly selective detection of glutathione over cystein and homocystein [J]. Microchimica Acta, 2020, 187(11): 631. doi: 10.1007/s00604-020-04602-2
[47] ZHU Y J, WU J F, WANG K, et al. Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy [J]. Talanta, 2021, 224: 121852. doi: 10.1016/j.talanta.2020.121852
[48] FAN Z Z, FAN L F, SHUANG S M, et al. Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO2 nanorod arrays [J]. Talanta, 2018, 189: 16-23. doi: 10.1016/j.talanta.2018.06.043
[49] JIAO A X, CUI Q Q, LI S, et al. Aligned TiO2 nanorod arrays decorated with closely interconnected Au/Ag nanoparticles: Near-infrared SERS active sensor for monitoring of antibiotic molecules in water [J]. Sensors and Actuators B:Chemical, 2022, 350: 130848. doi: 10.1016/j.snb.2021.130848
[50] YANG M, ZHANG X F, GUO C Y, et al. Resistive room temperature DMA gas sensor based on the forest-like unusual n-type PANI/TiO2 nanocomposites [J]. Sensors and Actuators B:Chemical, 2021, 342: 130067. doi: 10.1016/j.snb.2021.130067
[51] PRASAD M S, CHEN R, NI H W, et al. Directly grown of 3D-nickel oxide nano flowers on TiO2 nanowire arrays by hydrothermal route for electrochemical determination of naringenin flavonoid in vegetable samples [J]. Arabian Journal of Chemistry, 2020, 13(1): 1520-1531. doi: 10.1016/j.arabjc.2017.12.004
[52] FU Y M, REN Z Q, WU J Z, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances [J]. Applied Catalysis B:Environmental, 2021, 285: 119785. doi: 10.1016/j.apcatb.2020.119785
[53] SHANG M X, ZHANG J L, QI H, et al. All-electrodeposited amorphous MoSx@ZnO core-shell nanorod arrays for self-powered visible-light-activated photoelectrochemical tobramycin aptasensing [J]. Biosensors and Bioelectronics, 2019, 136: 53-59. doi: 10.1016/j.bios.2019.04.019
[54] YANG Z Q, WANG Y, ZHANG D. A novel signal-on photoelectrochemical sensing platform based on biosynthesis of CdS quantum dots sensitizing ZnO nanorod arrays [J]. Sensors and Actuators B:Chemical, 2018, 261: 515-521. doi: 10.1016/j.snb.2018.01.190
[55] ZHAO K, YAN X Q, GU Y S, et al. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure [J]. Small, 2016, 12(2): 245-251. doi: 10.1002/smll.201502042
[56] SHEN Q M, ZHAO X M, ZHOU S W, et al. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+ [J]. The Journal of Physical Chemistry C, 2011, 115(36): 17958-17964. doi: 10.1021/jp203868t
[57] WENG Q H, ZHENG X N, ZHANG S Y, et al. A photoelectrochemical immunosensor based on natural pigment sensitized ZnO for alpha-fetoprotein detection [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 388: 112200. doi: 10.1016/j.jphotochem.2019.112200
[58] ZHAI X R, XU F, LI Y J, et al. A highly selective and recyclable sensor for the electroanalysis of phosphothioate pesticides using silver-doped ZnO nanorods arrays [J]. Analytica Chimica Acta, 2021, 1152: 338285. doi: 10.1016/j.aca.2021.338285
[59] SU X, LIU C J, LIU Y, et al. Construction of BiVO4 nanosheets@WO3 arrays heterojunction photoanodes by versatile phase transformation strategy [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 533-544. doi: 10.1016/S1003-6326(21)65515-2
[60] TOMIĆ M, FOHLEROVA Z, GRÀCIA I, et al. UV-light activated APTES modified WO3-x nanowires sensitive to ethanol and nitrogen dioxide [J]. Sensors and Actuators B:Chemical, 2021, 328: 129046. doi: 10.1016/j.snb.2020.129046
[61] ZHENG G W, WANG J S, LI H Y, et al. WO3/Cu2O heterojunction for the efficient photoelectrochemical property without external bias [J]. Applied Catalysis B:Environmental, 2020, 265: 118561. doi: 10.1016/j.apcatb.2019.118561
[62] SANDIL D, SRIVASTAVA S, MALHOTRA B D, et al. Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker [J]. Journal of Alloys and Compounds, 2018, 763: 102-110. doi: 10.1016/j.jallcom.2018.04.293
[63] ZHANG S, ZHENG H J, JIANG R J, et al. Ultrasensitive PEC aptasensor based on one dimensional hierarchical SnS2| oxygen vacancy-WO3 co-sensitized by formation of a cascade structure for signal amplification [J]. Sensors and Actuators B:Chemical, 2022, 351: 130966. doi: 10.1016/j.snb.2021.130966
[64] DANG X M, ZHAO H M. Signal amplified sandwich-type photoelectrochemical sensing assay based on rGO-Znln2S4 functionalized Au-WO3 IOPCs Z-scheme heterojunction [J]. Electrochimica Acta, 2021, 365: 137382. doi: 10.1016/j.electacta.2020.137382
[65] WANG D, HUANG S M, LI H J, et al. Ultrathin WO3 nanosheets modified by g-C3N4 for highly efficient acetone vapor detection [J]. Sensors and Actuators B:Chemical, 2019, 282: 961-971. doi: 10.1016/j.snb.2018.11.138
[66] WU L P, MA S X, LI J, et al. In2O3 anchored Fe2O3 nanorod arrays for enhanced photoelectrochemical performance [J]. Thin Solid Films, 2021, 724: 138600. doi: 10.1016/j.tsf.2021.138600
[67] ZHU J H, FENG Y G, WANG A J, et al. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays [J]. Biosensors and Bioelectronics, 2021, 181: 113158. doi: 10.1016/j.bios.2021.113158
[68] QIAO L, LIAO M J, WU J X, et al. Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution [J]. International Journal of Hydrogen Energy, 2018, 43(49): 22235-22242. doi: 10.1016/j.ijhydene.2018.10.090