[1] CHAVES M, BARBOSA S C, MALINOWSKI M M, et al. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment [J]. The Science of the Total Environment, 2020, 734: 139374. doi: 10.1016/j.scitotenv.2020.139374
[2] FISCH K, ZHANG R F, ZHOU M, et al. PPCPs - A human and veterinary fingerprint in the Pearl River Delta and northern South China Sea [J]. Emerging Contaminants, 2021, 7: 10-21. doi: 10.1016/j.emcon.2020.11.006
[3] PAPAGEORGIOU M, ZIORIS I, DANIS T, et al. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece [J]. Science of the Total Environment, 2019, 694: 133565. doi: 10.1016/j.scitotenv.2019.07.371
[4] LIU S, WANG C, WANG P F, et al. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China [J]. Environmental Research, 2021, 198: 110449. doi: 10.1016/j.envres.2020.110449
[5] LIU M, YIN H W, WU Q. Occurrence and health risk assessment of pharmaceutical and personal care products (PPCPs) in tap water of Shanghai [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109497. doi: 10.1016/j.ecoenv.2019.109497
[6] TIAN Y J, ZOU J R, FENG L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs [J]. Water Research, 2019, 149: 35-41. doi: 10.1016/j.watres.2018.10.076
[7] ZHANG J W, FU D F, WU J L. Photodegradation of Norfloxacin in aqueous solution containing algae [J]. Journal of Environmental Sciences, 2012, 24(4): 743-749. doi: 10.1016/S1001-0742(11)60814-0
[8] LUO L J, LAI X Y, CHEN B W, et al. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]Pyrene in water [J]. Scientific Reports, 2015, 5: 12776. doi: 10.1038/srep12776
[9] GE L Y, DENG H H, WU F, et al. Microalgae-promoted photodegradation of two endocrine disrupters in aqueous solutions [J]. Journal of Chemical Technology & Biotechnology, 2009, 84(3): 331-336.
[10] DU Y X, WANG J, ZHU F Y, et al. Comprehensive assessment of three typical antibiotics on cyanobacteria (Microcystis aeruginosa): The impact and recovery capability [J]. Ecotoxicology and Environmental Safety, 2018, 160: 84-93. doi: 10.1016/j.ecoenv.2018.05.035
[11] 彭章娥, 冯劲梅, 何淑英, 等. 含藻水中壬基酚的光降解转化研究 [J]. 环境科学, 2012, 33(10): 3466-3472. doi: 10.13227/j.hjkx.2012.10.013 PENG Z G, FENG J M, HE S Y, et al. Study on the degradation and transformation of nonylphenol in water containing algae [J]. Environmental Science, 2012, 33(10): 3466-3472(in Chinese). doi: 10.13227/j.hjkx.2012.10.013
[12] ZEPP R G, SCHLOTZHAUER P F. Influence of algae on photolysis rates of chemicals in water [J]. Environmental Science & Technology, 1983, 17(8): 462-468.
[13] QU F S, LIANG H, HE J G, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling [J]. Water Research, 2012, 46(9): 2881-2890. doi: 10.1016/j.watres.2012.02.045
[14] HUANG Y R, LI H Z, WEI X M, et al. The effect of low frequency ultrasonic treatment on the release of extracellular organic matter of Microcystis aeruginosa [J]. Chemical Engineering Journal, 2020, 383: 123141. doi: 10.1016/j.cej.2019.123141
[15] MYKLESTAD S M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides [J]. Science of the Total Environment, 1995, 165(1/2/3): 155-164.
[16] HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Research, 2008, 42(13): 3435-3445. doi: 10.1016/j.watres.2007.10.032
[17] LI L, GUO H C, SHAO C, et al. Effect of algal organic matter (AOM) extracted from Microcystis aeruginosa on photo-degradation of Diuron [J]. Chemical Engineering Journal, 2015, 281: 265-271. doi: 10.1016/j.cej.2015.06.091
[18] WU P H, YEH H Y, CHOU P H, et al. Algal extracellular organic matter mediated photocatalytic degradation of estrogens [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111818. doi: 10.1016/j.ecoenv.2020.111818
[19] ZUO Y T, WU J, CHENG S, et al. Identification of pterins as characteristic humic-like fluorophores released from cyanobacteria and their behavior and fate in natural and engineered water systems [J]. Chemical Engineering Journal, 2022, 428: 131154. doi: 10.1016/j.cej.2021.131154
[20] HUA L C, LIN J L, CHEN P C, et al. Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts [J]. Chemical Engineering Journal, 2017, 328: 1022-1030. doi: 10.1016/j.cej.2017.07.123
[21] TIAN Y J, WEI L X, YIN Z, et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure [J]. Water Research, 2019, 164: 114940. doi: 10.1016/j.watres.2019.114940
[22] FANG J Y, YANG X, MA J, et al. Characterization of algal organic matter and formation of DBPs from chlor(am)ination [J]. Water Research, 2010, 44(20): 5897-5906. doi: 10.1016/j.watres.2010.07.009
[23] PIVOKONSKY M, SAFARIKOVA J, BARESOVA M, et al. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga [J]. Water Research, 2014, 51: 37-46. doi: 10.1016/j.watres.2013.12.022
[24] LEE D, KWON M, AHN Y, et al. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals [J]. Water Research, 2018, 144: 13-25. doi: 10.1016/j.watres.2018.06.069
[25] LEE E, GLOVER C M, ROSARIO-ORTIZ F L. Photochemical formation of hydroxyl radical from effluent organic matter: Role of composition [J]. Environmental Science & Technology, 2013, 47(21): 12073-12080.
[26] STRAVS M A, POMATI F, HOLLENDER J. Exploring micropollutant biotransformation in three freshwater phytoplankton species [J]. Environmental Science. Processes & Impacts, 2017, 19(6): 822-832.
[27] WANG L, ZHANG C B, WU F, et al. Photodegradation of aniline in aqueous suspensions of microalgae [J]. Journal of Photochemistry and Photobiology B:Biology, 2007, 87(1): 49-57. doi: 10.1016/j.jphotobiol.2006.12.006
[28] LUO L J, WANG P, LIN L, et al. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae [J]. Process Biochemistry, 2014, 49(10): 1723-1732. doi: 10.1016/j.procbio.2014.06.026
[29] Govindjee, SHEVELA D. Adventures with cyanobacteria: A personal perspective [J]. Frontiers in Plant Science, 2011, 2: 28.
[30] SONG W H, BARDOWELL S, O'SHEA K E. Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins) [J]. Environmental Science & Technology, 2007, 41(15): 5336-5341.
[31] ROBERTSON P J, LAWTON L A, CORNISH B J P A. The involvement of phycocyanin pigment in the photodecomposition of the cyanobacterial toxin, microcystin-LR [J]. Journal of Porphyrins and Phthalocyanines, 1999, 3(67): 544-551. doi: 10.1002/(SICI)1099-1409(199908/10)3:6/7<544::AID-JPP173>3.3.CO;2-Z
[32] PENG Z E, WU F, DENG N S. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions [J]. Environmental Pollution, 2006, 144(3): 840-846. doi: 10.1016/j.envpol.2006.02.006
[33] LIU X L, WU F, DENG N S. Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W) [J]. Environmental Pollution, 2003, 126(3): 393-398. doi: 10.1016/S0269-7491(03)00229-X
[34] ZHAO F, ZHANG D, XU C Y, et al. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110552. doi: 10.1016/j.ecoenv.2020.110552
[35] HSIAO H Y, LIN H H H, YANG J S, et al. Intracellular organic matter from Chlorella vulgaris enhances the photodegradation of acetaminophen [J]. Chemosphere, 2021, 271: 129507. doi: 10.1016/j.chemosphere.2020.129507
[36] TENORIO R, FEDDERS A C, STRATHMANN T J, et al. Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems [J]. Environmental Science:Water Research & Technology, 2017, 3(6): 1095-1108.
[37] NIU X Z, CROUÉ J P. Photochemical production of hydroxyl radical from algal organic matter [J]. Water Research, 2019, 161: 11-16. doi: 10.1016/j.watres.2019.05.089
[38] MCNEILL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties [J]. Environmental Science. Processes & Impacts, 2016, 18(11): 1381-1399.
[39] YAO J J, ZHAO M, SONG L L, et al. Characteristics of extracellular organic matters and the formation potential of disinfection by-products during the growth phases of M. aeruginosa and Synedra sp [J]. Environmental Science and Pollution Research, 2022, 29(10): 14509-14521. doi: 10.1007/s11356-021-16647-8
[40] DU Y X, WANG J, LI H T, et al. The dual function of the algal treatment: Antibiotic elimination combined with CO2 fixation [J]. Chemosphere, 2018, 211: 192-201. doi: 10.1016/j.chemosphere.2018.07.163
[41] ZHANG L, GUO R X, LI H T, et al. Mechanism analysis for the process-dependent driven mode of NaHCO3 in algal antibiotic removal: Efficiency, degradation pathway and metabolic response [J]. Journal of Hazardous Materials, 2020, 394: 122531. doi: 10.1016/j.jhazmat.2020.122531
[42] CHENG D M, LIU H F, E Y, et al. Effects of natural colloidal particles derived from a shallow lake on the photodegradation of ofloxacin and ciprofloxacin [J]. Science of the Total Environment, 2021, 773: 145102. doi: 10.1016/j.scitotenv.2021.145102
[43] YANG X F, ZHENG X, WU L J, et al. Interactions between algal (AOM) and natural organic matter (NOM): Impacts on their photodegradation in surface waters [J]. Environmental Pollution, 2018, 242: 1185-1197. doi: 10.1016/j.envpol.2018.07.099
[44] TONG M Y, LI X, LUO Q, et al. Effects of humic acids on biotoxicity of tetracycline to microalgae Coelastrella sp [J]. Algal Research, 2020, 50: 101962. doi: 10.1016/j.algal.2020.101962
[45] TIAN Y J, FENG L, LI R N, et al. Inhibitory effects of antioxidant moieties in humic substances on phototransformation of chlortetracycline mediated by the algae extracellular organic matter [J]. Science of the Total Environment, 2021, 798: 149001. doi: 10.1016/j.scitotenv.2021.149001
[46] QIAN J, SHIMOTORI K, LIU X, et al. Enhancement of algal growth by Mg2+ released from anaerobic digestion effluent of aquatic macrophytes through photolysis [J]. Biochemical Engineering Journal, 2021, 172: 108065. doi: 10.1016/j.bej.2021.108065
[47] MCINTYRE A M, GUÉGUEN C. Binding interactions of algal-derived dissolved organic matter with metal ions [J]. Chemosphere, 2013, 90(2): 620-626. doi: 10.1016/j.chemosphere.2012.08.057
[48] WEI L X, LI H X, LU J F. Algae-induced photodegradation of antibiotics: A review [J]. Environmental Pollution, 2021, 272: 115589. doi: 10.1016/j.envpol.2020.115589
[49] GE L Y, DENG H H. Degradation of two fluoroquinolone antibiotics photoinduced by Fe(Ⅲ)-microalgae suspension in an aqueous solution [J]. Photochemical & Photobiological Sciences, 2015, 14(4): 693-699.
[50] ZHOU T, CAO L P, ZHANG Q, et al. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway [J]. Journal of Hazardous Materials, 2021, 413: 125310. doi: 10.1016/j.jhazmat.2021.125310
[51] CAO J S, JIANG R X, WANG J Q, et al. Study on the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition [J]. Ecotoxicology and Environmental Safety, 2018, 159: 56-62. doi: 10.1016/j.ecoenv.2018.04.068
[52] JIANG R X, WEI Y R, SUN J Y, et al. Degradation of cefradine in alga-containing water environment: A mechanism and kinetic study [J]. Environmental Science and Pollution Research International, 2019, 26(9): 9184-9192. doi: 10.1007/s11356-019-04279-y