[1] |
赵曼淑, 刘涛, 鹿文慧, 等. 基于CTAC改性活性炭的信封式膜包用于水溶液中六价铬去除 [J]. 环境化学, 2020, 39(9): 2593-2601. doi: 10.7524/j.issn.0254-6108.2019062401
ZHAO M S, LIU T, LU W H, et al. Envelope membrane packed with CTAC modified active carbon for Cr(Ⅵ) removal from aqueous solution [J]. Environmental Chemistry, 2020, 39(9): 2593-2601(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062401
|
[2] |
张诚, 陈远洪, 王庆森, 等. 连续电镀锡钝化六价铬废水的处理 [J]. 电镀与涂饰, 2020, 39(13): 875-878.
ZHANG C, CHEN Y H, WANG Q S, et al. Treatment of hexavalent chromium-containing wastewater discharged from passivation phase in continuous tin electroplating process [J]. Electroplating & Finishing, 2020, 39(13): 875-878(in Chinese).
|
[3] |
高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
GAO W G, QIAN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
|
[4] |
范俊英. 回收电镀废水中六价铬的离子交换法应用分析 [J]. 资源节约与环保, 2015(8): 56.
FAN J Y. Application analysis of ion exchange method for recovering hexavalent chromium from electroplating wastewater [J]. Resources Economization & Environmental Protection, 2015(8): 56(in Chinese).
|
[5] |
张铁军, 李博, 韩剑宏, 等. 磁性改性玉米秸秆材料吸附铬的性能及机理研究 [J]. 工业水处理, 2020, 40(12): 100-105.
ZHANG T J, LI B, HAN J H, et al. Study on adsorption performance and mechanism of chromium on magnetic modified corn stalk [J]. Industrial Water Treatment, 2020, 40(12): 100-105(in Chinese).
|
[6] |
彭鑫, 王静蕾, 常金明, 等. 基于壳聚糖的吸附材料在六价铬吸附中的应用 [J]. 高分子材料科学与工程, 2021, 37(6): 181-190.
PENG X, WANG J L, CHANG J M, et al. Removal of hexavalent chromium by chitosan-based adsorbents [J]. Polymer Materials Science & Engineering, 2021, 37(6): 181-190(in Chinese).
|
[7] |
周晓倩, 郭华明, 赵凯. 改性天然菱铁矿去除水中六价铬 [J]. 环境工程学报, 2015, 9(9): 4171-4177.
ZHOU X Q, GUO H M, ZHAO K. Removal of hexavalent chromium from water solution by modified natural siderite [J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4171-4177(in Chinese).
|
[8] |
DIM P E, MUSTAPHA L S, TERMTANUN M, et al. Adsorption of chromium (Ⅵ) and iron (Ⅲ) ions onto acid-modified kaolinite: Isotherm, kinetics and thermodynamics studies [J]. Arabian Journal of Chemistry, 2021, 14(4): 103064. doi: 10.1016/j.arabjc.2021.103064
|
[9] |
聂兰玉, 陈海, 白智勇, 等. 羟基氧化铝吸附去除六价铬 [J]. 环境工程学报, 2015, 9(8): 3847-3853. doi: 10.12030/j.cjee.20150842
NIE L Y, CHEN H, BAI Z Y, et al. Adsorption of chromium(Ⅵ) by aluminum oxyhydroxide [J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3847-3853(in Chinese). doi: 10.12030/j.cjee.20150842
|
[10] |
李雯, 张光华, 刘林涛. 硅胶负载微波交联壳聚糖对制革废水中Cr(Ⅵ)的吸附研究 [J]. 西部皮革, 2010, 32(1): 33-35,39.
LI W, ZHANG G H, LIU L T. Silica gel based cross-linked chitosan prepared under microwave irradiation as Cr(Ⅵ) adsorbent [J]. West Leather, 2010, 32(1): 33-35,39(in Chinese).
|
[11] |
BOUSTILA H, BOUTILLARA Y, VELASCO L F, et al. Tailoring activated carbon properties for Pb(II) and Cr(VI) removal from water in continuous mode [J]. Chemical Engineering & Technology, 2022, 45(2): 258-265.
|
[12] |
贺龙强, 胡鹏, 付克明. 利用粉煤灰制备分子筛及对水体中六价铬的吸附研究 [J]. 硅酸盐通报, 2017, 36(10): 3493-3497,3503. doi: 10.16552/j.cnki.issn1001-1625.2017.10.045
HE L Q, HU P, FU K M. Adsorption of hexavalent chromium by zeolite synthesized of fly ash [J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3493-3497,3503(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2017.10.045
|
[13] |
HUANG S Y, PANG H W, LI L, et al. Unexpected ultrafast and high adsorption of U(Ⅵ) and Eu(Ⅲ) from solution using porous Al2O3 microspheres derived from MIL-53 [J]. Chemical Engineering Journal, 2018, 353: 157-166. doi: 10.1016/j.cej.2018.07.129
|
[14] |
DRISKO G L, CHEE KIMLING M, SCALES N, et al. One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2010, 26(22): 17581-17588. doi: 10.1021/la103177h
|
[15] |
NI Y Y, YANG J H, SUN L X, et al. La/LaF3 co-modified MIL-53(Cr) as an efficient adsorbent for the removal of tetracycline [J]. Journal of Hazardous Materials, 2022, 426: 128112. doi: 10.1016/j.jhazmat.2021.128112
|
[16] |
OUYANG B W, CHEN Q, YUAN H H, et al. Reversible environmental impacts of iron-based metal-organic framework MIL-53(Fe) on nitrogen-fixing bacterium Azotobacter vinelandii [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107794. doi: 10.1016/j.jece.2022.107794
|
[17] |
LI X, LIU Y, ZHANG C L, et al. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions [J]. Chemical Engineering Journal, 2018, 336: 241-252. doi: 10.1016/j.cej.2017.11.188
|
[18] |
HUANG H L, LI J R, WANG K K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks [J]. Nature Communications, 2015, 6: 8847. doi: 10.1038/ncomms9847
|
[19] |
ZHANG L, WU HB, et al. Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage[J]. CrystEngComm. 2013(15): 9332-9335.
|
[20] |
QIN Y Y, WANG Q Y, GE J L, et al. Microwave ultrasound-assisted synthesis of NH2-MIL-53(Al) for fluorescence detection of organosulfur compounds in model fuel [J]. Inorganic Chemistry Communications, 2021, 132: 108828. doi: 10.1016/j.inoche.2021.108828
|
[21] |
邹文兵, 沈军, 邹丽萍, 等. La2O3掺杂氧化铝气凝胶的制备与耐温性能[J]. 稀有金属材料与工程, 2018, 47(S2): 99-103.
ZOU W B, SHEN J, ZOU L P, et al. Fabrication and thermal stability of La2O3 doped alumina aerogel[J]. Rare Metal Materials and Engineering, 2018, 47(Sup 2): 99-103(in Chinese).
|
[22] |
矫宝庆, 唐克, 洪新, 等. 活性氧化铝吸附脱除模拟油中吡啶的研究 [J]. 石油炼制与化工, 2022, 53(3): 91-98.
JIAO B Q, TANG K, HONG X, et al. Study on adsorption removal of pyridine from model fuels by three kinds of activated alumina [J]. Petroleum Processing and Petrochemicals, 2022, 53(3): 91-98(in Chinese).
|
[23] |
LI G, ZHAO H F, GUO P T, et al. Effective removal of tinidazole by MIL-53(Al)-NDC metal-organic framework from aqueous solution [J]. Journal of Solid State Chemistry, 2022, 310: 123066. doi: 10.1016/j.jssc.2022.123066
|
[24] |
JIN X Y, LIU Y, TAN J, et al. Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles [J]. Journal of Cleaner Production, 2018, 176: 929-936. doi: 10.1016/j.jclepro.2017.12.026
|
[25] |
谢发之, 李海斌, 李国莲, 等. 富里酸对针铁矿吸附Cr(Ⅵ)的影响机理 [J]. 环境科学研究, 2016, 29(10): 1506-1512. doi: 10.13198/j.issn.1001-6929.2016.10.14
XIE F Z, LI H B, LI G L, et al. Effects of fulvic acid on the adsorption of chromium(Ⅵ) to goethite [J]. Research of Environmental Sciences, 2016, 29(10): 1506-1512(in Chinese). doi: 10.13198/j.issn.1001-6929.2016.10.14
|
[26] |
DING J, PU L T, WANG Y F, et al. Adsorption and reduction of Cr(Ⅵ) together with Cr(Ⅲ) sequestration by polyaniline confined in pores of polystyrene beads [J]. Environmental Science & Technology, 2018, 52(21): 12602-12611.
|
[27] |
LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(Ⅵ) elimination activities of the MOF-derivatives and their composites [J]. Chemical Engineering Journal, 2021, 405: 126648. doi: 10.1016/j.cej.2020.126648
|
[28] |
WANG C, XIONG C, HE Y L, et al. Facile preparation of magnetic Zr-MOF for adsorption of Pb(Ⅱ) and Cr(VI) from water: Adsorption characteristics and mechanisms [J]. Chemical Engineering Journal, 2021, 415: 128923. doi: 10.1016/j.cej.2021.128923
|
[29] |
YI Y, WANG X Y, MA J, et al. Fe(Ⅲ) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(Ⅵ) [J]. Powder Technology, 2021, 388: 485-495. doi: 10.1016/j.powtec.2021.04.066
|
[30] |
LIM A, CHEW J J, NGU L H, et al. Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution [J]. ACS Omega, 2020, 5(44): 28673-28683. doi: 10.1021/acsomega.0c03811
|
[31] |
FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems [J]. Chemical Engineering Journal, 2010, 156(1): 2-10. doi: 10.1016/j.cej.2009.09.013
|
[32] |
KHAMWICHIT A, DECHAPANYA W, DECHAPANYA W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated Venus shell [J]. Heliyon, 2022, 8(6): e09610. doi: 10.1016/j.heliyon.2022.e09610
|