[1] 刘玉华, 王慧, 胡晓珂. 不动杆菌属(Acinetobacter)细菌降解石油烃的研究进展 [J]. 微生物学通报, 2016, 43(7): 1579-1589. LIU Y H, WANG H, HU X K. Recent advances in the biodegradation of hydrocarbons by Acinetobacter species [J]. Microbiology China, 2016, 43(7): 1579-1589(in Chinese).
[2] 陈婧, 栾天罡, 罗丽娟. 烷基化多环芳烃的细菌降解研究进展 [J]. 环境化学, 2023, 42(1): 1-14. doi: 10.1002/etc.5366 CHEN J, LUAN T G, LUO L J. Research progress on bacterial degradation of alkylated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2023, 42(1): 1-14(in Chinese). doi: 10.1002/etc.5366
[3] 钱林波, 李航宇, 陈梦舫. 高级氧化技术修复苯并[a]芘污染土壤研究进展 [J]. 环境化学, 2022, 41(10): 3205-3213. doi: 10.7524/j.issn.0254-6108.2021110203 QIAN L B, LI H Y, CHEN M F. Research progress on the remediation of benzo[a]pyrene contaminated soil by advanced oxidation technology [J]. Environmental Chemistry, 2022, 41(10): 3205-3213(in Chinese). doi: 10.7524/j.issn.0254-6108.2021110203
[4] 李沅蔚, 王传远, 邹艳梅, 等. 渤海表面沉积物中石油-重金属复合污染的生物修复 [J]. 环境化学, 2019, 38(1): 186-194. doi: 10.7524/j.issn.0254-6108.2018012902 LI Y W, WANG C Y, ZOU Y M, et al. Bioremediation of combined pollution of petroleum and heavy metal in the surface sediments of Bohai Sea [J]. Environmental Chemistry, 2019, 38(1): 186-194(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012902
[5] VAN HAMME J D, SINGH A, WARD O P. Recent advances in petroleum microbiology [J]. Microbiology and Molecular Biology Reviews, 2003, 67(4): 503-549. doi: 10.1128/MMBR.67.4.503-549.2003
[6] TIMMIS K N, PIEPER D H. Bacteria designed for bioremediation [J]. Trends in Biotechnology, 1999, 17(5): 201-204. doi: 10.1016/S0167-7799(98)01295-5
[7] XIANG L, LI G Q, WEN L, et al. Biodegradation of aromatic pollutants meets synthetic biology [J]. Synthetic and Systems Biotechnology, 2021, 6(3): 153-162. doi: 10.1016/j.synbio.2021.06.001
[8] ISMAIL N A, KASMURI N, HAMZAH N. Microbial bioremediation techniques for polycyclic aromatic hydrocarbon (PAHs)—a review [J]. Water, Air, & Soil Pollution, 2022, 233(4): 124.
[9] Sakshi, HARITASH A K. A comprehensive review of metabolic and genomic aspects of PAH-degradation [J]. Archives of Microbiology, 2020, 202(8): 2033-2058. doi: 10.1007/s00203-020-01929-5
[10] 侯晓鹏, 李春华, 叶春, 等. 不同电子受体作用下微生物降解多环芳烃研究进展 [J]. 环境工程技术学报, 2016, 6(1): 78-84. HOU X P, LI C H, YE C, et al. Research progress of biodegradation of polycyclic aromatic hydrocarbons with amendment of different electron acceptors [J]. Journal of Environmental Engineering Technology, 2016, 6(1): 78-84(in Chinese).
[11] 谭文捷, 李宗良, 丁爱中, 等. 土壤和地下水中多环芳烃生物降解研究进展 [J]. 生态环境, 2007, 16(4): 1310-1317. TAN W J, LI Z L, DING A Z, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil and groundwater: A review [J]. Ecology and Environment, 2007, 16(4): 1310-1317(in Chinese).
[12] 陶雪琴, 党志, 卢桂宁, 等. 污染土壤中多环芳烃的微生物降解及其机理研究进展 [J]. 矿物岩石地球化学通报, 2003, 22(4): 356-360. doi: 10.3969/j.issn.1007-2802.2003.04.014 TAO X Q, DANG Z, LU G N, et al. Biodegradation mechanism of polycyclic aromatic hydrocarbons (PAHs) in soil: A review [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2003, 22(4): 356-360(in Chinese). doi: 10.3969/j.issn.1007-2802.2003.04.014
[13] JIANG Y, ZHANG Z, ZHANG X M. Co-biodegradation of Pyrene and other PAHs by the bacterium Acinetobacter johnsonii [J]. Ecotoxicology and Environmental Safety, 2018, 163: 465-470. doi: 10.1016/j.ecoenv.2018.07.065
[14] BRZESZCZ J, KASZYCKI P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility [J]. Biodegradation, 2018, 29(4): 359-407. doi: 10.1007/s10532-018-9837-x
[15] ABBASIAN F, LOCKINGTON R, MEGHARAJ M, et al. A review on the genetics of aliphatic and aromatic hydrocarbon degradation [J]. Applied Biochemistry and Biotechnology, 2016, 178(2): 224-250. doi: 10.1007/s12010-015-1881-y
[16] ABBASIAN F, LOCKINGTON R, MALLAVARAPU M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria [J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699. doi: 10.1007/s12010-015-1603-5
[17] van BEILEN J B, FUNHOFF E G. Alkane hydroxylases involved in microbial alkane degradation [J]. Applied Microbiology and Biotechnology, 2007, 74(1): 13-21. doi: 10.1007/s00253-006-0748-0
[18] KWEON O, KIM S J, HOLLAND R D, et al. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1 [J]. Journal of Bacteriology, 2011, 193(17): 4326-4337. doi: 10.1128/JB.00215-11
[19] KOTOKY R, OGAWA N, PANDEY P. The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons [J]. Microbiological Research, 2022, 262: 127087. doi: 10.1016/j.micres.2022.127087
[20] 马涛, 原文婷, 彭英, 等. 黄孢原毛平革菌对氯代蒽的生物降解及降解途径 [J]. 环境化学, 2019, 38(7): 1636-1644. doi: 10.7524/j.issn.0254-6108.2018091204 MA T, YUAN W T, PENG Y, et al. Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway [J]. Environmental Chemistry, 2019, 38(7): 1636-1644(in Chinese). doi: 10.7524/j.issn.0254-6108.2018091204
[21] KHAN A A, WANG R F, CAO W W, et al. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1 [J]. Applied and Environmental Microbiology, 2001, 67(8): 3577-3585. doi: 10.1128/AEM.67.8.3577-3585.2001
[22] YANG Y, ZHANG Z W, LIU R X, et al. Research progress in bioremediation of petroleum pollution [J]. Environmental Science and Pollution Research International, 2021, 28(34): 46877-46893. doi: 10.1007/s11356-021-15310-6
[23] JAISWAL S, SHUKLA P. Alternative strategies for microbial remediation of pollutants via synthetic biology [J]. Frontiers in Microbiology, 2020, 11: 808. doi: 10.3389/fmicb.2020.00808
[24] ADAMS B L. The next generation of synthetic biology chassis: Moving synthetic biology from the laboratory to the field [J]. ACS Synthetic Biology, 2016, 5(12): 1328-1330. doi: 10.1021/acssynbio.6b00256
[25] TANG H Z, YU H, LI Q G, et al. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds [J]. Journal of Bacteriology, 2011, 193(23): 6789-6790. doi: 10.1128/JB.06201-11
[26] WANG W W, LI Q G, ZHANG L G, et al. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida  B6-2 (ATCC BAA-2545) as a ‘superstar’ for mineralization of PAHs and dioxin-like compounds [J]. Environmental Microbiology, 2021, 23(8): 4309-4325. doi: 10.1111/1462-2920.15613
[27] TANG Q, LU T, LIU S J. Developing a synthetic biology toolkit for Comamonas testosteroni, an emerging cellular chassis for bioremediation [J]. ACS Synthetic Biology, 2018, 7(7): 1753-1762. doi: 10.1021/acssynbio.7b00430
[28] KOLENC R J, INNISS W E, GLICK B R, et al. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium [J]. Applied and Environmental Microbiology, 1988, 54(3): 638-641. doi: 10.1128/aem.54.3.638-641.1988
[29] SIANI L, PAPA R, di DONATO A, et al. Recombinant expression of toluene o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine antarctic bacterium Pseudoalteromonas haloplanktis TAC125 [J]. Journal of Biotechnology, 2006, 126(3): 334-341. doi: 10.1016/j.jbiotec.2006.04.027
[30] PARRILLI E, PAPA R, TUTINO M L, et al. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds [J]. Bioengineered Bugs, 2010, 1(3): 213-216. doi: 10.4161/bbug.1.3.11439
[31] LANGE C C, WACKETT L P, MINTON K W, et al. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments [J]. Nature Biotechnology, 1998, 16(10): 929-933. doi: 10.1038/nbt1098-929
[32] BRIM H, OSBORNE J P, KOSTANDARITHES H M, et al. Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction[J]. Microbiology (Reading, England), 2006, 152(Pt 8): 2469-2477.
[33] KHOSHKHOLGH SIMA N A, EBADI A, REIAHISAMANI N, et al. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects [J]. Journal of Environmental Management, 2019, 250: 109476. doi: 10.1016/j.jenvman.2019.109476
[34] GALLO G, LO PICCOLO L, RENZONE G, et al. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane [J]. Applied Microbiology and Biotechnology, 2012, 94(5): 1289-1301. doi: 10.1007/s00253-012-4046-8
[35] SAITO A, IWABUCHI T, HARAYAMA S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7 [J]. Chemosphere, 1999, 38(6): 1331-1337. doi: 10.1016/S0045-6535(98)00534-7
[36] CHANG Z W, LU M, SHON K J, et al. Functional expression of Carassius auratus cytochrome P4501A in a novel Shewanella oneidensis expression system and application for the degradation of benzo[a]Pyrene [J]. Journal of Biotechnology, 2014, 179: 1-7. doi: 10.1016/j.jbiotec.2014.03.008
[37] CHO O, CHOI K Y, ZYLSTRA G J, et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation [J]. Biochemical and Biophysical Research Communications, 2005, 327(3): 656-662. doi: 10.1016/j.bbrc.2004.12.060
[38] CAO L, WANG Q, ZHANG J, et al. Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil [J]. World Journal of Microbiology & Biotechnology, 2012, 28(9): 2783-2790.
[39] MARDANI G, MAHVI A H, HASHEMZADEH-CHALESHTORI M, et al. Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil [J]. Jundishapur Journal of Natural Pharmaceutical Products, 2017, 12(3(Supp): 1-11.
[40] AHANKOUB M, MARDANI G, GHASEMI-DEHKORDI P, et al. Biodecomposition of phenanthrene and Pyrene by a genetically engineered Escherichia coli [J]. Recent Patents on Biotechnology, 2020, 14(2): 121-133. doi: 10.2174/1872208314666200128103513
[41] XIE Y, YU F, WANG Q, et al. Cloning of catechol 2, 3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil [J]. Indian Journal of Microbiology, 2014, 54(1): 59-64. doi: 10.1007/s12088-013-0411-2
[42] LEE A H, KANG C M, LEE Y M, et al. Heterologous expression of a new manganese-dependent peroxidase gene from Peniophora incarnata KUC8836 and its ability to remove anthracene in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering, 2016, 122(6): 716-721. doi: 10.1016/j.jbiosc.2016.06.006
[43] CORTÉS-ESPINOSA D V, ABSALÓN Á E, SANCHEZ N, et al. Heterologous expression of manganese peroxidase in Aspergillus niger and its effect on phenanthrene removal from soil [J]. Journal of Molecular Microbiology and Biotechnology, 2011, 21(3/4): 120-129.
[44] BALCÁZAR-LÓPEZ E, MÉNDEZ-LORENZO L H, BATISTA-GARCÍA R A, et al. Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride [J]. PLoS One, 2016, 11(2): e0147997. doi: 10.1371/journal.pone.0147997
[45] ZHANG H, ZHANG X Y, GENG A L. Expression of a novel manganese peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation [J]. Biochemical Engineering Journal, 2020, 153: 107402. doi: 10.1016/j.bej.2019.107402
[46] MCCARL V, SOMERVILLE M V, LY M A, et al. Heterologous expression of Mycobacterium alkene monooxygenases in gram-positive and gram-negative bacterial hosts [J]. Applied and Environmental Microbiology, 2018, 84(15): e00397-e00318.
[47] ZHOU Y, WEI J S, SHAO N M, et al. Construction of a genetically engineered microorganism for phenanthrene biodegradation [J]. Journal of Basic Microbiology, 2013, 53(2): 188-194. doi: 10.1002/jobm.201100322
[48] WU Y C, TENG Y, LI Z G, et al. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil [J]. Soil Biology and Biochemistry, 2008, 40(3): 789-796. doi: 10.1016/j.soilbio.2007.10.013
[49] BULTER T, ALCALDE M, SIEBER V, et al. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution [J]. Applied and Environmental Microbiology, 2003, 69(2): 987-995. doi: 10.1128/AEM.69.2.987-995.2003
[50] ZUMÁRRAGA M, PLOU F J, GARCÍA-ARELLANO H, et al. Bioremediation of polycyclic aromatic hydrocarbons by fungal laccases engineered by directed evolution [J]. Biocatalysis and Biotransformation, 2007, 25(2/3/4): 219-228.
[51] ROJO F, PIEPER D H, ENGESSER K H, et al. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics [J]. Science, 1987, 238(4832): 1395-1398. doi: 10.1126/science.3479842
[52] PIPKE R, WAGNER-DÖBLER I, TIMMIS K N, et al. Survival and function of a genetically engineered Pseudomonad in aquatic sediment microcosms [J]. Applied and Environmental Microbiology, 1992, 58(4): 1259-1265. doi: 10.1128/aem.58.4.1259-1265.1992
[53] URGUN-DEMIRTAS M, STARK B, PAGILLA K. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants [J]. Critical Reviews in Biotechnology, 2006, 26(3): 145-164. doi: 10.1080/07388550600842794
[54] CHUNG J W, WEBSTER D A, PAGILLA K R, et al. Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability [J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(1): 27-33. doi: 10.1038/sj.jim.7000156
[55] KIM Y, WEBSTER D A, STARK B C. Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes [J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(4): 148-154. doi: 10.1007/s10295-005-0215-4
[56] KAHRAMAN H, GECKIL H. Degradation of benzene, toluene and xylene by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene [J]. Engineering in Life Sciences, 2005, 5(4): 363-368. doi: 10.1002/elsc.200520088
[57] SHEN X H, ZHOU N Y, LIU S J. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: Another potential for applications for this bacterium? [J]. Applied Microbiology and Biotechnology, 2012, 95(1): 77-89. doi: 10.1007/s00253-012-4139-4
[58] LEE S Y, LE T H, CHANG S T, et al. Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum [J]. Current Microbiology, 2010, 61(6): 596-600. doi: 10.1007/s00284-010-9658-6
[59] NIE M Q, NIE H Y, CAO W, et al. Phenanthrene metabolites from a new polycyclic aromatic hydrocarbon-degrading bacterium Aeromonas salmonicida subsp. achromogenes strain NY4 [J]. Polycyclic Aromatic Compounds, 2016, 36(2): 132-151. doi: 10.1080/10406638.2014.957406
[60] LI J, YE B C. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid [J]. Bioresource Technology, 2021, 319: 124239. doi: 10.1016/j.biortech.2020.124239
[61] YONG Y C, ZHONG J J. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway [J]. Bioresource Technology, 2013, 136: 761-765. doi: 10.1016/j.biortech.2013.03.134
[62] YU Z L, HU Z Y, XU Q M, et al. The LuxI/LuxR-type quorum sensing system regulates degradation of polycyclic aromatic hydrocarbons via two mechanisms [J]. International Journal of Molecular Sciences, 2020, 21(15): 5548. doi: 10.3390/ijms21155548
[63] HUANG Y L, ZENG Y H, YU Z L, et al. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems - A potential broad application on bioremediation [J]. Bioresource Technology, 2013, 148: 311-316. doi: 10.1016/j.biortech.2013.08.155
[64] JIA X Q, HE Y, JIANG D W, et al. Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval [J]. Biochemical Engineering Journal, 2019, 148: 214-223. doi: 10.1016/j.bej.2019.05.010
[65] 徐希辉, 刘晓伟, 蒋建东. 微生物菌群强化修复有机污染物污染环境: 现状与挑战 [J]. 南京农业大学学报, 2020, 43(1): 10-17. doi: 10.7685/jnau.201907064 XU X H, LIU X W, JIANG J D. Enhanced bioremediation of organic pollutant contaminated environment by microbial consortia: Current situations and challenges [J]. Journal of Nanjing Agricultural University, 2020, 43(1): 10-17(in Chinese). doi: 10.7685/jnau.201907064
[66] WEYENS N, SCHELLINGEN K, BECKERS B, et al. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination [J]. Journal of Soils and Sediments, 2013, 13(1): 176-188. doi: 10.1007/s11368-012-0582-1
[67] ZAFRA G, ABSALÓN Á E, ANDUCHO-REYES M Á, et al. Construction of PAH-degrading mixed microbial consortia by induced selection in soil [J]. Chemosphere, 2017, 172: 120-126. doi: 10.1016/j.chemosphere.2016.12.038
[68] ZHANG G B, YANG X H, ZHAO Z H, et al. Artificial consortium of three E. coli BL21 strains with synergistic functional modules for complete phenanthrene degradation [J]. ACS Synthetic Biology, 2022, 11(1): 162-175. doi: 10.1021/acssynbio.1c00349
[69] 王红旗, 熊樱, 陈延君. 土壤中石油污染物微生物修复动力学和机理初探 [J]. 环境化学, 2008, 27(3): 339-344. doi: 10.3321/j.issn:0254-6108.2008.03.014 WANG H Q, XIONG Y, CHEN Y J. Study on the kinetics and mechanism of microbial remediation of petroleum contaminants in soil [J]. Environmental Chemistry, 2008, 27(3): 339-344(in Chinese). doi: 10.3321/j.issn:0254-6108.2008.03.014
[70] 强婧, 尹华, 彭辉, 等. 生物表面活性剂与蒽降解菌的协同降解效应 [J]. 环境化学, 2010, 29(1): 58-62. QIANG J, YIN H, PENG H, et al. Effect of biosurfactant and degrading strain on anthracene biodegradation [J]. Environmental Chemistry, 2010, 29(1): 58-62(in Chinese).
[71] 郭利果, 苏荣国, 梁生康, 等. 鼠李糖脂生物表面活性剂对多环芳烃的增溶作用 [J]. 环境化学, 2009, 28(4): 510-514. GUO L G, SU R G, LIANG S K, et al. Solubilization of polycyclic aromatic hydrocarbons by rhamnolipid biosurfactant [J]. Environmental Chemistry, 2009, 28(4): 510-514(in Chinese).
[72] QIN R L, XU T, JIA X Q. Engineering Pseudomonas putida to produce rhamnolipid biosurfactants for promoting phenanthrene biodegradation by a two-species microbial consortium [J]. Microbiology Spectrum, 2022, 10(4): e0091022. doi: 10.1128/spectrum.00910-22
[73] BARAC T, TAGHAVI S, BORREMANS B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants [J]. Nature Biotechnology, 2004, 22(5): 583-588. doi: 10.1038/nbt960
[74] GERMAINE K J, KEOGH E, RYAN D, et al. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation [J]. FEMS Microbiology Letters, 2009, 296(2): 226-234. doi: 10.1111/j.1574-6968.2009.01637.x
[75] MORATTI C F, SCOTT C, COLEMAN N V. Synthetic biology approaches to hydrocarbon biosensors: A review [J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 804234. doi: 10.3389/fbioe.2021.804234
[76] 侯启会, 马安周, 庄绪亮, 等. 微生物全细胞传感器在重金属生物可利用度监测中的研究进展 [J]. 环境科学, 2013, 34(1): 347-356. HOU Q H, MA A Z, ZHUANG X L, et al. Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor [J]. Environmental Science, 2013, 34(1): 347-356(in Chinese).
[77] KING J M, DIGRAZIA P M, APPLEGATE B, et al. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation [J]. Science, 1990, 249(4970): 778-781. doi: 10.1126/science.249.4970.778
[78] RIPP S, NIVENS D E, AHN Y, et al. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control [J]. Environmental Science & Technology, 2000, 34(5): 846-853.
[79] STICHER P, JASPERS M C, STEMMLER K, et al. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples [J]. Applied and Environmental Microbiology, 1997, 63(10): 4053-4060. doi: 10.1128/aem.63.10.4053-4060.1997
[80] HUANG W E, WANG H, ZHENG H J, et al. Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate [J]. Environmental Microbiology, 2005, 7(9): 1339-1348. doi: 10.1111/j.1462-5822.2005.00821.x
[81] SUN Y J, ZHAO X H, ZHANG D Y, et al. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site [J]. Chemosphere, 2017, 186: 510-518. doi: 10.1016/j.chemosphere.2017.08.027
[82] WEI H, ZE-LING S, LE-LE C, et al. Specific detection of bioavailable phenanthrene and mercury by bacterium reporters in the red soil [J]. International Journal of Environmental Science and Technology, 2014, 11(3): 685-694. doi: 10.1007/s13762-013-0216-1
[83] HE W, HU Z H, YUAN S, et al. Bacterial bioreporter-based mercury and phenanthrene assessment in Yangtze River Delta soils of China [J]. Journal of Environmental Quality, 2018, 47(3): 562-570. doi: 10.2134/jeq2017.07.0286
[84] PATEL R, ZAVERI P, MUKHERJEE A, et al. Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109450. doi: 10.1016/j.ecoenv.2019.109450
[85] LEHTINEN T, SANTALA V, SANTALA S. Twin-layer biosensor for real-time monitoring of alkane metabolism [J]. FEMS Microbiology Letters, 2017, 364(6): fnx053.
[86] RODRIGUES J L, RODRIGUES L R. Synthetic biology: perspectives in industrial biotechnology// Current developments in biotechnology and bioengineering: foundations of biotechnology and bioengineering[M]. Elsevier B. V. 2017.
[87] 李琴, 伍一军. 基因工程微生物的环境监测及生物防御体系研究进展 [J]. 生物工程学报, 2008, 24(3): 355-362. LI Q, WU Y J. Progress of environmental monitoring and biological containment system on genetically engineered microorganisms [J]. Chinese Journal of Biotechnology, 2008, 24(3): 355-362(in Chinese).
[88] CONTRERAS A, MOLIN S, RAMOS J L. Conditional-suicide containment system for bacteria which mineralize aromatics [J]. Applied and Environmental Microbiology, 1991, 57(5): 1504-1508. doi: 10.1128/aem.57.5.1504-1508.1991
[89] RONCHEL M C, RAMOS J L. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation [J]. Applied and Environmental Microbiology, 2001, 67(6): 2649-2656. doi: 10.1128/AEM.67.6.2649-2656.2001
[90] RONCHEL M C, MOLINA L, WITTE A, et al. Characterization of cell Lysis in Pseudomonas putida induced upon expression of heterologous killing genes [J]. Applied and Environmental Microbiology, 1998, 64(12): 4904-4911. doi: 10.1128/AEM.64.12.4904-4911.1998
[91] SZAFRANSKI P, MELLO C M, SANO T, et al. A new approach for containment of microorganisms: Dual control of streptavidin expression by antisense RNA and the T7 transcription system [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(4): 1059-1063. doi: 10.1073/pnas.94.4.1059