[1] |
HU C Y, LO S L, KUAN W H, et al. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation[J]. Water Research, 2005, 39(5): 895-901. doi: 10.1016/j.watres.2004.11.034
|
[2] |
WAN K, HUANG L, YAN J, et al. Removal of fluoride from industrial wastewater by using different adsorbents: A review[J]. Science of the Total Environment, 2021, 773: 145535. doi: 10.1016/j.scitotenv.2021.145535
|
[3] |
CASTAÑEDA L F, RODRÍGUEZ J F, NAVA J L. Electrocoagulation as an affordable technology for decontamination of drinking water containing fluoride: A critical review[J]. Chemical Engineering Journal, 2021, 413: 127529. doi: 10.1016/j.cej.2020.127529
|
[4] |
DAS D, NANDI B K. Simultaneous removal of fluoride and Fe(II) ions from drinking water by electrocoagulation[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103643. doi: 10.1016/j.jece.2019.103643
|
[5] |
VALDEZ-JIMÉNEZ L, SORIA FREGOZO C, MIRANDA BELTRÁN M L, et al. Efectos del flúor sobre el sistema nervioso central[J]. Neurología, 2011, 26(5): 297-300.
|
[6] |
GARCÍA-MONTALVO E A, REYES-PÉREZ H, DEL RAZO L M. Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress[J]. Toxicology, 2009, 263(2): 75-83.
|
[7] |
CHATTOPADHYAY A, PODDER S, AGARWAL S, et al. Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice[J]. Archives of Toxicology, 2011, 85(4): 327-335. doi: 10.1007/s00204-010-0588-7
|
[8] |
HUANG L, LUO Z, HUANG X, et al. Applications of biomass-based materials to remove fluoride from wastewater: A review[J]. Chemosphere, 2022, 301: 134679. doi: 10.1016/j.chemosphere.2022.134679
|
[9] |
VITHANAGE M, BHATTACHARYA P. Fluoride in the environment: sources, distribution and defluoridation[J]. Environmental Chemistry Letters, 2015, 13(2): 131-147. doi: 10.1007/s10311-015-0496-4
|
[10] |
HE J, YANG Y, WU Z, et al. Review of fluoride removal from water environment by adsorption[J]. Journal of Environmental Chemical Engineering, 2020, 8(6).
|
[11] |
LIN J Y, MAHASTI N N N, HUANG Y H. Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review[J]. Journal of Hazardous Materials, 2021, 407: 124401. doi: 10.1016/j.jhazmat.2020.124401
|
[12] |
王兵, 王佩洁, 祝伟, 等. 混凝-吸附联用预处理页岩气压裂返排液[J]. 环境工程学报, 2019, 13(10): 2475-2481.
|
[13] |
KOILRAJ P, KANNAN S. Aqueous fluoride removal using ZnCr layered double hydroxides and their polymeric composites: Batch and column studies[J]. Chemical Engineering Journal, 2013, 234: 406-415. doi: 10.1016/j.cej.2013.08.101
|
[14] |
刘敏. 羟基磷灰石去除煤矿矿井水氟化物工艺研究及参数优化[J]. 煤化工, 2021, 49(1): 80-85.
|
[15] |
刘锐平. 饮用水氟污染控制原理与技术[J]. 应用生态学报, 2019, 30(1): 30-36.
|
[16] |
马宏涛, 孙水裕, 许明鑫. 臭氧联合混凝沉淀法去除浮选废水中有机磷[J]. 环境工程学报, 2017, 11(1): 285-290.
|
[17] |
LEE W, WESTERHOFF P. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation[J]. Water Research, 2006, 40(20): 3767-3774. doi: 10.1016/j.watres.2006.08.008
|
[18] |
LIU Z, ZHOU L, LIU F, et al. Impact of Al-based coagulants on the formation of aerobic granules: Comparison between poly aluminum chloride (PAC) and aluminum sulfate (AS)[J]. Science of the Total Environment, 2019, 685: 74-84. doi: 10.1016/j.scitotenv.2019.05.306
|
[19] |
GEORGIOU D, AIVAZIDIS A, HATIRAS J, et al. Treatment of cotton textile wastewater using lime and ferrous sulfate[J]. Water Research, 2003, 37(9): 2248-2250. doi: 10.1016/S0043-1354(02)00481-5
|
[20] |
ZHANG J, JIN J, GUO B, et al. Effect of mixed basalt fiber and calcium sulfate whisker on chloride permeability of concrete[J]. Journal of Building Engineering, 2023, 64: 105633. doi: 10.1016/j.jobe.2022.105633
|
[21] |
刘皓月, 王磊, 吕永涛, 等. 微生物絮凝剂与聚合氯化铝复配处理污水厂二级出水[J]. 环境工程学报, 2017, 11(1): 111-115.
|
[22] |
彭赵旭, 牛宁琪, 王炬, 等. 响应面法优化石灰处理高氟废水的研究[J]. 河南师范大学学报(自然科学版), 2022, 50(1): 108-114.
|
[23] |
LEE E Y, WONG S Y, PHANG S J, et al. Additively manufactured photoreactor with immobilized thermoset acrylic-graphitic carbon nitride nanosheets for water remediation: Response surface methods and adsorption modelling studies[J]. Chemical Engineering Journal, 2022, 455: 140633.
|
[24] |
TOOR U A, DUONG T T, KO S Y, et al. Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM)[J]. Journal of Environmental Management, 2021, 279: 111625. doi: 10.1016/j.jenvman.2020.111625
|
[25] |
严博文, 叶长文, 龚锐, 等. 响应曲面分析优化改性粉煤灰漂珠对水中氟的吸附性能及机理研究[J]. 环境科学研究, 2019, 32(4): 709-717.
|
[26] |
ZHU X, TU X, MEI D, et al. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method[J]. Chemosphere, 2016, 155: 9-17. doi: 10.1016/j.chemosphere.2016.03.114
|
[27] |
KONG Y, ZHANG Z, PENG Y. Multi-objective optimization of ultrasonic algae removal technology by using response surface method and non-dominated sorting genetic algorithm-II[J]. Ecotoxicology and Environmental Safety, 2022, 230: 113151. doi: 10.1016/j.ecoenv.2021.113151
|
[28] |
MAO J, GUANHUA N, YUHANG X, et al. Modeling and optimization of mechanical properties of drilling sealing materials based on response surface method[J]. Journal of Cleaner Production, 2022, 377: 134452. doi: 10.1016/j.jclepro.2022.134452
|
[29] |
OFGEA N M, TURA A M, FANTA G M. Activated carbon from H3PO4 activated Moringa Stenopetale Seed Husk for removal of methylene blue: Optimization using the response surface method (RSM)[J]. Environmental and Sustainability Indicators, 2022, 16: 100214. doi: 10.1016/j.indic.2022.100214
|
[30] |
周鑫, 孙海龙, 张泽乾. 响应面法在污水处理工艺优化中的应用[J]. 化学研究与应用, 2017, 29(6): 753-760.
|
[31] |
LUO Y, GUO P, GAO J, et al. Application of design-expert response surface methodology for the prediction of rejuvenated asphalt fatigue life[J]. Journal of Cleaner Production, 2022, 379: 134427. doi: 10.1016/j.jclepro.2022.134427
|
[32] |
LIU Y, WANG X J, ZHOU S, et al. Enhancing public building energy efficiency using the response surface method: An optimal design approach[J]. Environmental Impact Assessment Review, 2021, 87: 106548. doi: 10.1016/j.eiar.2020.106548
|
[33] |
汤鸿霄. 羟基聚合氯化铝的絮凝形态学[J]. 环境科学学报, 1998, 18(1): 3-12.
|
[34] |
唐婉莹, 翟宇峰, 王连军, 等. 聚合氯化铝絮凝机理探讨[J]. 南京理工大学学报, 1997, 21(4): 41-44.
|
[35] |
张忠国, 栾兆坤, 赵颖, 等. 聚合氯化铝(PACl)混凝絮体的破碎与恢复[J]. 环境科学, 2007, 28(2): 346-351.
|