[1] SUN J M. Pork price forecast based on breeding sow stocks and hog-grain price ratio[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 1-6.
[2] 第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18): 8-10.
[3] 贺仲兵, 刘云国. 添加原水在猪场废水处理中的应用[J]. 黑龙江畜牧兽医, 2012, 24: 83-84. doi: 10.13881/j.cnki.hljxmsy.2012.24.005
[4] 陈燕, 刘国华, 范强, 等. 不同溶解氧条件下A/O系统的除碳脱氮效果和细菌群落结构变化[J]. 环境科学, 2015, 36(7): 2610-2616. doi: 10.13227/j.hjkx.2015.07.038
[5] 蔡英英, 韩志刚, 邓良伟, 等. A/O与SBR工艺处理猪场废水厌氧消化液对比研究[J]. 农业环境科学学报, 2022, 41(3): 648-657. doi: 10.11654/jaes.2021-0895
[6] 杨含. 零价铁介导下猪场废水厌氧消化液自养脱氮的影响因素与机制[D]. 北京: 中国农业科学院, 2020.
[7] 范鑫帝. 养猪场废水微氧活性污泥处理系统的调控运行与脱氮机制[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[8] 吴杭航. 猪场废水厌氧沼液SFAO4微氧曝气处理工艺脱氮性能研究[D]. 杭州: 浙江大学, 2017.
[9] 王成. 升流式微氧反应器处理低C/N比养猪废水效能[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[10] CHEN Y, ZHENG R, SUI Q, et al. Coupling anammox with denitrification in a full-scale combined biological nitrogen removal process for swine wastewater treatment[J]. Bioresource Technology, 2021, 329: 124906. doi: 10.1016/j.biortech.2021.124906
[11] 黄春雷, 王振旗, 孙杰, 等. 一体化低溶解氧生化处理工艺在猪场废水脱氮工程中的应用[J]. 净水技术, 2020, 39(S2): 78-83. doi: 10.15890/j.cnki.jsjs.2020.s2.015
[12] LIU G Q, WU X W, LI D Y, et al. Long-Term low dissolved oxygen operation decreases N2O emissions in the activated sludge process[J]. Environmental Science & Technology, 2021, 55(10): 6975-6983.
[13] 胡纪萃. UASB反应器三相分离器的设计方法[J]. 中国沼气, 1992(3): 5-9.
[14] LIU W L, YANG Q, MA B, et al. Rapid achievement of nitritation using aerobic starvation[J]. Environmental Science & Technology, 2017, 51(7): 4001-4008.
[15] LEDOUX M, LAMY F. Determination of proteins and sulfobetaine with the Folin-phenol reagent[J]. Analytical Biochemistry, 1986, 157(1): 28-31. doi: 10.1016/0003-2697(86)90191-0
[16] SHARMA V, SUROLIA A. Analyses of carbohydrate recognition by legume lectins: Size of the combining site loops and their primary specificity[J]. Journal of Molecular Biology, 1997, 267(2): 433-445. doi: 10.1006/jmbi.1996.0863
[17] QIAN W T, MA B, LI X Y, et al. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019, 278: 444-449. doi: 10.1016/j.biortech.2019.01.105
[18] 周安兴, 刘玄. 亚硝氮对COD测试的影响及掩蔽研究[J]. 工程技术研究, 2019, 4(2): 253-254. doi: 10.19537/j.cnki.2096-2789.2019.02.123
[19] PAN Y, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15): 4832-4840. doi: 10.1016/j.watres.2012.06.003
[20] 宋姬晨, 王淑莹, 杨雄, 等. 亚硝酸盐对A2O系统脱氮除磷的影响[J]. 中国环境科学, 2014, 34(9): 2231-2238.
[21] YAN L, LIU Y, REN Y, et al. The effect of pH on the efficiency of an SBR processing piggery wastewater[J]. Biotechnology and Bioprocess Engineering, 2013, 18(6): 1230-1237. doi: 10.1007/s12257-013-0292-6
[22] HUNIK H J, TRAMPER J, WIJFFELS R H. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas Europaea and Nitrobacter agilis[J]. Bioprocess Engineering, 1994, 11(2): 73-82. doi: 10.1007/BF00389563
[23] 王伸, 邓良伟, 姜奕圻, 等. 加碱对猪场废水厌氧消化液好氧处理过程酸化改进作用及其对菌群结构的影响[J]. 中国沼气, 2017, 35(6): 3-9. doi: 10.3969/j.issn.1000-1166.2017.06.001
[24] WANG X, YANG R, ZHANG Z, et al. Mass balance and bacterial characteristics in an in-situ full-scale swine wastewater treatment system occurring anammox process[J]. Bioresource Technology, 2019, 292: 122005. doi: 10.1016/j.biortech.2019.122005
[25] 张布云. 好氧-微氧两级SBR处理养猪废水技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[26] 吴丹. 不同曝气方式下短程硝化反硝化工艺特性研究[D]. 重庆: 重庆大学, 2012.
[27] SUN Z, LI J, FAN Y, et al. Efficiency and mechanism of nitrogen removal from piggery wastewater in an improved microaerobic process[J]. Science of the Total Environment, 2021, 774: 144925. doi: 10.1016/j.scitotenv.2020.144925
[28] TIAN Y, LI J, FAN Y, et al. Performance and nitrogen removal mechanism in a novel aerobic-microaerobic combined process treating manure-free piggery wastewater[J]. Bioresource Technology, 2022, 345: 126494. doi: 10.1016/j.biortech.2021.126494
[29] 王红武, 李晓岩, 赵庆祥. 胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J]. 中国安全科学学报, 2003, 13(9): 31-34. doi: 10.3969/j.issn.1003-3033.2003.09.008
[30] 王红武, 李晓岩, 赵庆祥. 活性污泥的表面特性与其沉降脱水性能的关系[J]. 清华大学学报(自然科学版), 2004, 44(6): 766-769. doi: 10.3321/j.issn:1000-0054.2004.06.013
[31] FRøLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research (Oxford), 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
[32] WANG S, HUANG X, LIU L, et al. Insight into the role of exopolysaccharide in determining the structural stability of aerobic granular sludge[J]. Journal of Environmental Management, 2021, 298: 113521. doi: 10.1016/j.jenvman.2021.113521
[33] 周健, 龙腾锐, 苗利利. 胞外聚合物EPS对活性污泥沉降性能的影响研究[J]. 环境科学学报, 2004, 24(4): 613-618. doi: 10.3321/j.issn:0253-2468.2004.04.009
[34] FAN Z, ZENG W, LIU H, et al. A novel partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN) process for real domestic wastewater and waste activated sludge treatment[J]. Water Research, 2022, 217: 118376. doi: 10.1016/j.watres.2022.118376
[35] LI J, PENG Y, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160: 178-187. doi: 10.1016/j.watres.2019.05.070
[36] 朱葛夫, 张净瑞, 刘超翔, 等. 厌氧氨氧化工艺的启动及有机物浓度对其影响研究[J]. 环境工程, 2016, 34(2): 27-32. doi: 10.13205/j.hjgc.201602007
[37] STROUS M, KUENEN J G, JETTEN M S M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999
[38] LIANG W, YU C, REN H, et al. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate[J]. Bioresource Technology, 2015, 198: 172-180. doi: 10.1016/j.biortech.2015.08.075
[39] LANGONE M, FERRENTINO R, CADONNA M, et al. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters[J]. Chemosphere, 2016, 164: 488-498. doi: 10.1016/j.chemosphere.2016.08.094