[1] |
World Health Organization. WHO coronavirus disease(COVID-19) dashboard[EB/OL]. [2022-10-5].
|
[2] |
WANG C C, PRATHER K A, SZNITMAN J, et al. Airborne transmission of respiratory viruses [J]. Science, 2021, 373(6558): eabd9149. doi: 10.1126/science.abd9149
|
[3] |
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for chlorine [S]. Atlanta, GA: U. S. Department of Health and Human Services, Public Health Service, 2010.
|
[4] |
LU J, GUO J H. Disinfection spreads antimicrobial resistance [J]. Science, 2021, 371(6528): 474.
|
[5] |
尹炜, 王超, 张洪, 等. 新冠肺炎疫情期消毒剂的使用对水环境的影响: 以武汉市为例 [J]. 人民长江, 2020, 51(5): 29-33,88.
YIN W, WANG C, ZHANG H, et al. Effects of disinfectants on aquatic environment in Wuhan City during COVID-19 pandemic [J]. Yangtze River, 2020, 51(5): 29-33,88(in Chinese).
|
[6] |
GÓRNY R L. Filamentous microorganisms and their fragments in indoor air: A review [J]. Annals of Agricultural and Environmental Medicine, 2004, 11(2): 185-197.
|
[7] |
雷长红. 空气微生物污染及其控制的研究进展 [J]. 职业与健康, 2013, 29(24): 3348-3350.
LEI C H. The research progress of air microbial contamination and its control [J]. Occupation and Health, 2013, 29(24): 3348-3350(in Chinese).
|
[8] |
AZAM M W, KHAN A U. Updates on the pathogenicity status of Pseudomonas aeruginosa [J]. Drug Discovery Today, 2019, 24(1): 350-359. doi: 10.1016/j.drudis.2018.07.003
|
[9] |
LI L Y, WANG Q, BI W J, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes [J]. Environmental Science & Technology, 2020, 54(7): 3900-3908.
|
[10] |
TSAY M D, TSENG C C, WU N X, et al. Size distribution and antibiotic-resistant characteristics of bacterial bioaerosol in intensive care unit before and during visits to patients [J]. Environment International, 2020, 144: 106024. doi: 10.1016/j.envint.2020.106024
|
[11] |
YANG K X, LI L, WANG Y J, et al. Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment [J]. Water Research, 2019, 149: 596-606. doi: 10.1016/j.watres.2018.11.027
|
[12] |
SPENCER R C. Bacillus anthracis [J]. Journal of Clinical Pathology, 2003, 56(3): 182-187. doi: 10.1136/jcp.56.3.182
|
[13] |
CASTILHO S R A, GODOY C S M, GUILARDE A O, et al. Acinetobacter baumannii strains isolated from patients in intensive care units in Goiânia, Brazil: Molecular and drug susceptibility profiles [J]. PLoS One, 2017, 12(5): e0176790. doi: 10.1371/journal.pone.0176790
|
[14] |
TROST E, BLOM J, de CASTRO SOARES S, et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia [J]. Journal of Bacteriology, 2012, 194(12): 3199-3215. doi: 10.1128/JB.00183-12
|
[15] |
CHEN L F. The changing epidemiology of methicillin-resistant Staphylococcus aureus: 50 years of a superbug [J]. American Journal of Infection Control, 2013, 41(5): 448-451. doi: 10.1016/j.ajic.2012.06.013
|
[16] |
BECKER K, BALLHAUSEN B, KÖCK R, et al. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages [J]. International Journal of Medical Microbiology, 2014, 304(7): 794-804. doi: 10.1016/j.ijmm.2014.06.007
|
[17] |
THOMPSON J M, GÜNDOĞDU A, STRATTON H M, et al. Antibiotic resistant Staphylococcus aureus in hospital wastewaters and sewage treatment plants with special reference to methicillin-resistant Staphylococcus aureus (MRSA) [J]. Journal of Applied Microbiology, 2013, 114(1): 44-54. doi: 10.1111/jam.12037
|
[18] |
KIM M, HEO S T, OH H, et al. Human zoonotic infectious disease caused by Streptococcus equi subsp. zooepidemicus [J]. Zoonoses and Public Health, 2022, 69(2): 136-142. doi: 10.1111/zph.12895
|
[19] |
MARTINS-DINIZ J N, Da SILVA R A M, MIRANDA E T, et al. Monitoramento de fungos anemófilos e de leveduras em unidade hospitalar [J]. Revista De Saúde Pública, 2005, 39(3): 398-405.
|
[20] |
GONÇALVES C L, MOTA F V, FERREIRA G F, et al. Airborne fungi in an intensive care unit [J]. Revista Brasleira De Biologia, 2018, 78(2): 265-270.
|
[21] |
LU Q B, WO Y, WANG L Y, et al. Molecular epidemiology of human Rhinovirus in children with acute respiratory diseases in Chongqing, China [J]. Scientific Reports, 2014, 4: 6686. doi: 10.1038/srep06686
|
[22] |
BELSER J A, LASH R R, GARG S, et al. The eyes have it: Influenza virus infection beyond the respiratory tract [J]. The Lancet Infectious Diseases, 2018, 18(7): e220-e227. doi: 10.1016/S1473-3099(18)30102-6
|
[23] |
SCHMIDT-CHANASIT J, SAUERBREI A. Evolution and world-wide distribution of varicella-zoster virus clades [J]. Infection, Genetics and Evolution, 2011, 11(1): 1-10. doi: 10.1016/j.meegid.2010.08.014
|
[24] |
REUTER D, SCHNEIDER-SCHAULIES J. Measles virus infection of the CNS: Human disease, animal models, and approaches to therapy [J]. Medical Microbiology and Immunology, 2010, 199(3): 261-271. doi: 10.1007/s00430-010-0153-2
|
[25] |
HVIID A, RUBIN S, MÜHLEMANN K. Mumps [J]. Lancet, 2008, 371(9616): 932-944. doi: 10.1016/S0140-6736(08)60419-5
|
[26] |
FIGUEIREDO L T M, de SOUZA W M, FERRÉS M, et al. Hantaviruses and cardiopulmonary syndrome in south America [J]. Virus Research, 2014, 187: 43-54. doi: 10.1016/j.virusres.2014.01.015
|
[27] |
ASHRAF O, VIRANI A, CHEEMA T. Covid-19 [J]. Critical Care Nursing Quarterly, 2021, 44(1): 128-137. doi: 10.1097/CNQ.0000000000000346
|
[28] |
FAN C L, LI Y P, LIU P X, et al. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China [J]. Science of the Total Environment, 2019, 672: 834-845. doi: 10.1016/j.scitotenv.2019.03.412
|
[29] |
HU Z C, LIU H, ZHANG H, et al. Temporal discrepancy of airborne total bacteria and pathogenic bacteria between day and night [J]. Environmental Research, 2020, 186: 109540. doi: 10.1016/j.envres.2020.109540
|
[30] |
LIANG Z S, YU Y, YE Z K, et al. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human [J]. Environment International, 2020, 143: 105934. doi: 10.1016/j.envint.2020.105934
|
[31] |
LIU H, ZHANG X, ZHANG H, et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter [J]. Environmental Pollution, 2018, 233: 483-493. doi: 10.1016/j.envpol.2017.10.070
|
[32] |
WEI M, LIU H F, CHEN J M, et al. Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of Northern China during the winter heating season [J]. Environmental Pollution, 2020, 262: 114188. doi: 10.1016/j.envpol.2020.114188
|
[33] |
ASGHAR A H, FAIDAH H S. Frequency and antimicrobial susceptibility of gram-negative bacteria isolated from 2 hospitals in Makkah, Saudi Arabia [J]. Saudi Medical Journal, 2009, 30(8): 1017-1023.
|
[34] |
SOLOMON F B, WADILO F, TUFA E G, et al. Extended spectrum and metalo beta-lactamase producing airborne Pseudomonas aeruginosa and Acinetobacter baumanii in restricted settings of a referral hospital: A neglected condition [J]. Antimicrobial Resistance and Infection Control, 2017, 6: 106. doi: 10.1186/s13756-017-0266-0
|
[35] |
FRANK D N, FEAZEL L M, BESSESEN M T, et al. The human nasal microbiota and Staphylococcus aureus carriage [J]. PLoS One, 2010, 5(5): e10598. doi: 10.1371/journal.pone.0010598
|
[36] |
KALYONCU F. Relationship between airborne fungal allergens and meteorological factors in Manisa City, Turkey [J]. Environmental Monitoring and Assessment, 2010, 165(1): 553-558.
|
[37] |
LUGAUSKAS A, KRIKSTAPONIS A, SVEISTYTE L. Airborne fungi in industrial environments: Potential agents of respiratory diseases [J]. Annals of Agricultural and Environmental Medicine:AAEM, 2004, 11(1): 19-25.
|
[38] |
ROY S, BHATTACHARYA S G. Airborne fungal spore concentration in an industrial township: Distribution and relation with meteorological parameters [J]. Aerobiologia, 2020, 36(4): 575-587. doi: 10.1007/s10453-020-09653-9
|
[39] |
丁浩, 何光军, 王琳淇. 人类环境病原真菌: 新生隐球菌的社会行为 [J]. 生物工程学报, 2017, 33(9): 1555-1566.
DING H, HE G J, WANG L Q. Party for killing: The social behaviors in Cryptococcus neoformans [J]. Chinese Journal of Biotechnology, 2017, 33(9): 1555-1566(in Chinese).
|
[40] |
国家质量监督检验检疫总局;卫生部. 室内空气质量标准: GB/T 18883—2002[S]. 北京: 中国标准出版社, 2003.
Ministry of Health of the People’s Republic of China. Indoor air quality STANDARD: GB/T 18883—2002[S]. Beijing: Standards Press of China, 2003(in Chinese).
|
[41] |
李沅津, 杨庆, 赵茹涵, 等. A~2O工艺污水处理厂微生物气溶胶逸散特征及暴露风险评价 [J]. 环境科学学报, 2021, 41(9): 3457-3463.
LI Y J, YANG Q, ZHAO R H, et al. Emission characteristics and exposure risk assessment of microbial aerosols from WWTP with A2O treatment process [J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3457-3463(in Chinese).
|
[42] |
张铭健, 曹国庆. 国内外室内空气微生物限值标准简介及对比分析 [J]. 暖通空调, 2019, 49(5): 40-45,33.
ZHANG M J, CAO G Q. Introduction and comparative analysis of indoor air microbial threshold in domestic and foreign standards [J]. Heating Ventilating & Air Conditioning, 2019, 49(5): 40-45,33(in Chinese).
|
[43] |
World Health Organization (WHO). Guidelines for concentration and exposure-response measurements of fine and ultra-fine particulate matter for use in epidemiological studies [S]. 2002.
|
[44] |
Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA). Verfahren zur Bestimmung der Schimmelpilzkonzentration in der Luft am Arbeitsplatz (#9430) [S]. 2004.
|
[45] |
OPPLIGER A, RUSCA S, CHARRIÈRE N, et al. Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills [J]. The Annals of Occupational Hygiene, 2005, 49(5): 385-391.
|
[46] |
BRANDL H. Bioaerosols in indoor environment - A review with special reference to residential and occupational locations [J]. The Open Environmental & Biological Monitoring Journal, 2011, 4(1): 83-96.
|
[47] |
国家市场监督管理总局, 国家标准化管理委员会. 高效空气过滤器: GB/T 13554—2020[S]. 北京: 中国标准出版社, 2020.
Standardization Administration of the People’s Republic of China. High efficiency particulate air filter: GB/T 13554—2020[S]. Beijing: Standards Press of China, 2020(in Chinese).
|
[48] |
张辉, 贾颖, 石彤, 等. 新型空气净化器净化性能研究 [J]. 天津大学学报(自然科学与工程技术版), 2020, 53(3): 301-308.
ZHANG H, JIA Y, SHI T, et al. Purification performance of a novel air purifier [J]. Journal of Tianjin University (Science and Technology), 2020, 53(3): 301-308(in Chinese).
|
[49] |
陈杨, 钱幺, 李君喜. 静电在空气净化器中的应用 [J]. 纺织科技进展, 2020(6): 38-41. doi: 10.3969/j.issn.1673-0356.2020.06.011
CHEN Y, QIAN Y, LI J X. Application of static electricity in air purifiers [J]. Progress in Textile Science & Technology, 2020(6): 38-41(in Chinese). doi: 10.3969/j.issn.1673-0356.2020.06.011
|
[50] |
伍诚麟, 田金, 许锋. 不同原理空气消毒净化器效果与分析 [J]. 医院管理论坛, 2022, 39(1): 83-87. doi: 10.3969/j.issn.1671-9069.2022.01.024
WU C L, TIAN J, XU F. Effect analysis of air disinfection purifier with different principles [J]. Hospital Management Forum, 2022, 39(1): 83-87(in Chinese). doi: 10.3969/j.issn.1671-9069.2022.01.024
|
[51] |
刘勇. 吸附—静电场综合式空气净化机研制在医院应用实验研究[D]. 长沙: 中南大学, 2011.
LIU Y. Evaluation research on the adsorbing and electrostatic field synthetic action mode of air dynamic purification system application in hospital[D]. Changsha: Central South University, 2011.
|
[52] |
DAVIDSON B L. Bare-bulb upper-room germicidal ultraviolet-C (GUV) indoor air disinfection for COVID-19 [J]. Photochemistry and Photobiology, 2021, 97(3): 524-526. doi: 10.1111/php.13380
|
[53] |
BERGMAN R S. Germicidal UV sources and systems [J]. Photochemistry and Photobiology, 2021, 97(3): 466-470. doi: 10.1111/php.13387
|
[54] |
FRANZ C M A P, SPECHT I, CHO G S, et al. UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology [J]. Food Control, 2009, 20(12): 1103-1107. doi: 10.1016/j.foodcont.2009.02.010
|
[55] |
NARDELL E A. Tuberculosis in New York City: Focal transmission of an often fatal disease [J]. the Journal of the American Medical Association, 1996, 276(15): 1259-1260. doi: 10.1001/jama.1996.03540150061032
|
[56] |
YAUN B R, SUMNER S S, EIFERT J D, et al. Inhibition of pathogens on fresh produce by ultraviolet energy [J]. International Journal of Food Microbiology, 2004, 90(1): 1-8. doi: 10.1016/S0168-1605(03)00158-2
|
[57] |
KIM D K, KANG D H. UVC LED irradiation effectively inactivates aerosolized viruses, bacteria, and fungi in a chamber-type air disinfection system [J]. Applied and Environmental Microbiology, 2018, 84(17): e00944-18.
|
[58] |
YANG Y, ZHANG H H, NUNAYON S S, et al. Disinfection efficacy of ultraviolet germicidal irradiation on airborne bacteria in ventilation ducts [J]. Indoor Air, 2018, 28(6): 806-817. doi: 10.1111/ina.12504
|
[59] |
WALKER C M, KO G. Effect of ultraviolet germicidal irradiation on viral aerosols [J]. Environmental Science & Technology, 2007, 41(15): 5460-5465.
|
[60] |
杨晶雪, 孙雷, 杜丽, 等. 紫外线照射消毒法对空气消毒净化的效果评价 [J]. 中国卫生标准管理, 2016, 7(22): 188-189.
YANG J X, SUN L, DU L, et al. The effect of ultraviolet radiation disinfection on air disinfection and purification [J]. China Health Standard Management, 2016, 7(22): 188-189(in Chinese).
|
[61] |
陆海, 李雪琪, 冯伟豪. 复活光强对大肠杆菌光复活影响的研究进展 [J]. 长春工程学院学报(自然科学版), 2021, 22(3): 99-103.
LU H, LI X Q FENG W H. The research progress on the influence of light resurrection by photoractivation light intensity to Escherichia coli [J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2021, 22(3): 99-103(in Chinese).
|
[62] |
国家卫生健康委办公厅. 消毒剂使用指南 [J]. 中国感染控制杂志, 2020, 19(2): 196-198. doi: 10.12138/j.issn.1671-9638.20206153
National Health Commission of the People’s Republic of China. Guidelines on disinfectant use [J]. Chinese Journal of Infection Control, 2020, 19(2): 196-198(in Chinese). doi: 10.12138/j.issn.1671-9638.20206153
|
[63] |
贾栗, 何俊, 金虹, 等. 新冠肺炎疫情常用化学消毒剂的健康危害及其防护 [J]. 中国消毒学杂志, 2020, 37(10): 781-785.
JIA L, HE J, JIN H, et al. Health hazards and protection of commonly used chemical disinfectants in COVID-19 [J]. Chinese Journal of Disinfection, 2020, 37(10): 781-785(in Chinese).
|
[64] |
CHUANG C Y, YANG S, CHANG M Y, et al. Inactivation efficiency to Bacillus subtilis and Escherichia coli bacterial aerosols of spraying neutral electrolyzed water [J]. Journal of the Air & Waste Management Association, 2013, 63(12): 1447-1456.
|
[65] |
ERSOY Z G, DINC O, CINAR B, et al. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis [J]. LWT-Food Science & Technology, 2019, 102: 205-213.
|
[66] |
WIGGINTON K R, PECSON B M, SIGSTAM T, et al. Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity [J]. Environmental Science & Technology, 2012, 46(21): 12069-12078.
|
[67] |
ONO T, YAMASHITA K, MURAYAMA T, et al. Microbicidal effect of weak acid hypochlorous solution on various microorganisms [J]. Biocontrol Science, 2012, 17(3): 129-133. doi: 10.4265/bio.17.129
|
[68] |
HAKIM H, THAMMAKARN C, SUGURO A, et al. Aerosol disinfection capacity of slightly acidic hypochlorous acid water towards Newcastle disease virus in the air: An in vivo experiment [J]. Avian Diseases, 2015, 59(4): 486-491. doi: 10.1637/11107-042115-Reg.1
|
[69] |
BOECKER D, BREVES R, ZHANG Z T, et al. Antimicrobial activity in the gasphase with hypochloric acid [J]. Current Directions in Biomedical Engineering, 2021, 7(2): 511-514. doi: 10.1515/cdbme-2021-2130
|
[70] |
陈丽珠. 次氯酸钠消毒控制微生物的效果评价 [J]. 工业用水与废水, 2015, 46(5): 18-20,61. doi: 10.3969/j.issn.1009-2455.2015.05.004
CHEN L Z. Effect of microbial controlling by sodium hypochlorite disinfection [J]. Industrial Water & Wastewater, 2015, 46(5): 18-20,61(in Chinese). doi: 10.3969/j.issn.1009-2455.2015.05.004
|
[71] |
ISHIKAWA S, UENO S, MITSUI M, et al. Construction of its evaluation system in originally designed test-chamber system and sporicidal activity of aerosolized hypochlorite solution to Bacillus subtilis spores [J]. Biocontrol Science, 2019, 24(1): 57-65. doi: 10.4265/bio.24.57
|
[72] |
OFORI I, MADDILA S, LIN J, et al. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism [J]. Journal of Environmental Science and Health, Part A, 2017, 52(7): 598-606. doi: 10.1080/10934529.2017.1293993
|
[73] |
HINENOYA A, AWASTHI S P, YASUDA N, et al. Chlorine dioxide is a better disinfectant than sodium hypochlorite against multi-drug resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii [J]. Japanese Journal of Infectious Diseases, 2015, 68(4): 276-279. doi: 10.7883/yoken.JJID.2014.294
|
[74] |
ALVAREZ M E, O'BRIEN R T. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine [J]. Applied and Environmental Microbiology, 1982, 44(5): 1064-1071. doi: 10.1128/aem.44.5.1064-1071.1982
|
[75] |
TOTARO M, BADALUCCO F, COSTA A L, et al. Effectiveness of disinfection with chlorine dioxide on respiratory transmitted, enteric, and bloodborne viruses: A narrative synthesis [J]. Pathogens , 2021, 10(8): 1017.
|
[76] |
SANEKATA T, FUKUDA T, MIURA T, et al. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus [J]. Biocontrol Science, 2010, 15(2): 45-49. doi: 10.4265/bio.15.45
|
[77] |
WEN G, XU X Q, HUANG T L, et al. Inactivation of three Genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms [J]. Water Research, 2017, 125: 132-140. doi: 10.1016/j.watres.2017.08.038
|
[78] |
LORET J F, ROBERT S, THOMAS V, et al. Comparison of disinfectants for biofilm, protozoa and Legionella control [J]. Journal of Water and Health, 2005, 3(4): 423-433. doi: 10.2166/wh.2005.047
|
[79] |
OGATA N. Denaturation of protein by chlorine dioxide: Oxidative modification of tryptophan and tyrosine residues [J]. Biochemistry, 2007, 46(16): 4898-4911. doi: 10.1021/bi061827u
|
[80] |
NOSS C I, HAUCHMAN F S, OLIVIERI V P. Chlorine dioxide reactivity with proteins [J]. Water Research, 1986, 20(3): 351-356. doi: 10.1016/0043-1354(86)90083-7
|
[81] |
JIN M, SHAN J Y, CHEN Z L, et al. Chlorine dioxide inactivation of enterovirus 71 in water and its impact on genomic targets [J]. Environmental Science & Technology, 2013, 47(9): 4590-4597.
|
[82] |
LU M C, HUANG D J, HSU C S, et al. Improvement of indoor air quality in pet shop using gaseous chlorine dioxide [J]. Environmental Monitoring and Assessment, 2018, 190(7): 371. doi: 10.1007/s10661-018-6723-2
|
[83] |
HSU C S, LU M C, HUANG D J. Effect of gaseous chlorine dioxide on student Cafeteria bioaerosols [J]. Clean - Soil, Air, Water, 2014, 42(1): 12-19. doi: 10.1002/clen.201100293
|
[84] |
HSU C S, LU M C, HUANG D J. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide [J]. Environmental Monitoring and Assessment, 2015, 187(2): 17. doi: 10.1007/s10661-014-4235-2
|
[85] |
BOONRATTANAKIJ N, YOMCHINDA S, LIN F J, et al. Investigation and disinfection of bacteria and fungi in sports fitness center [J]. Environmental Science and Pollution Research, 2021, 28(37): 52576-52586. doi: 10.1007/s11356-021-14323-5
|
[86] |
THORN R M S, ROBINSON G M, REYNOLDS D M. Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay [J]. Antimicrobial Agents and Chemotherapy, 2013, 57(5): 2216-2225. doi: 10.1128/AAC.02589-12
|
[87] |
李志强. 高压氧舱紫外线和次氯酸两种方法空气消毒效果对比分析 [J]. 中国医学工程, 2015, 23(10): 170-171.
LI Z Q. Comparative analysis of air disinfection effect of ultraviolet and hypochlorous acid in hyperbaric oxygen chamber [J]. China Medical Engineering, 2015, 23(10): 170-171(in Chinese).
|
[88] |
LINLEY E, DENYER S P, McDONNELL G, et al. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action [J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7): 1589-1596. doi: 10.1093/jac/dks129
|
[89] |
WANG D, YAMAKI S, KAWAI Y J, et al. Sanitizing efficacy and antimicrobial mechanism of peracetic acid against histamine-producing bacterium, Morganella psychrotolerans [J]. LWT-Food Science & Technology, 2020, 126: 109263.
|
[90] |
FINNEGAN M, LINLEY E, DENYER S P, et al. Mode of action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas forms [J]. Journal of Antimicrobial Chemotherapy, 2010, 65(10): 2108-2115. doi: 10.1093/jac/dkq308
|
[91] |
LEGGETT M J, SCHWARZ J S, BURKE P A, et al. Mechanism of sporicidal activity for the synergistic combination of peracetic acid and hydrogen peroxide [J]. Applied and Environmental Microbiology, 2015, 82(4): 1035-1039.
|
[92] |
LEROUGE S, SIMMONS A, SIMMONS A, et al. Sterilisation of Biomaterials and Medical Devices[M]. Woodhead Publishing, 2012
|
[93] |
TULADHAR E, TERPSTRA P, KOOPMANS M, et al. Virucidal efficacy of hydrogen peroxide vapour disinfection [J]. Journal of Hospital Infection, 2012, 80(2): 110-115. doi: 10.1016/j.jhin.2011.10.012
|
[94] |
MASOTTI F, VALLONE L, RANZINI S, et al. Effectiveness of air disinfection by ozonation or hydrogen peroxide aerosolization in dairy environments [J]. Food Control, 2019, 97: 32-38. doi: 10.1016/j.foodcont.2018.10.022
|
[95] |
CHOI J, LEE M, LEE Y, et al. Effectiveness of plasma-treated hydrogen peroxide mist disinfection in various hospital environments [J]. International Journal of Environmental Research and Public Health, 2021, 18(18): 9841. doi: 10.3390/ijerph18189841
|
[96] |
POPOV D A, ANUCHINA N M. Microbiological efficacy of hospital environment decontamination by hydrogen peroxide aerosol [J]. Biomedical Engineering, 2016, 50(2): 92-95. doi: 10.1007/s10527-016-9595-1
|
[97] |
HORN K, OTTER J A. Hydrogen peroxide vapor room disinfection and hand hygiene improvements reduce Clostridium difficile infection, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and extended-spectrum β-lactamase [J]. American Journal of Infection Control, 2015, 43(12): 1354-1356. doi: 10.1016/j.ajic.2015.06.029
|
[98] |
TUNG T C W, NIU J L, BURNETT J, et al. Determination of ozone emission from a domestic air cleaner and decay parameters using environmental chamber tests [J]. Indoor and Built Environment, 2005, 14(1): 29-37. doi: 10.1177/1420326X05049648
|
[99] |
BERMÚDEZ-AGUIRRE D, BARBOSA-CÁNOVAS G V. Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone [J]. Food Control, 2013, 29(1): 82-90. doi: 10.1016/j.foodcont.2012.05.073
|
[100] |
LARA FERNÁNDEZ G E, ARIOSA ACUÑA C M, BORROTO RODRÍGUEZ V, et al. Ozono Como método de desinfección del ambiente hospitalario [J]. Acta Médica Costarricense, 2020, 62(2): 72-78.
|
[101] |
GIRGIN ERSOY Z, BARISCI S, DINC O. Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone [J]. LWT- Food Science & Technology, 2019, 100: 306-313.
|
[102] |
KHADRE M A, YOUSEF A E, KIM J G. Microbiological aspects of ozone applications in food: A review [J]. Journal of Food Science, 2001, 66(9): 1242-1252. doi: 10.1111/j.1365-2621.2001.tb15196.x
|
[103] |
WU G H, SELDEN D, FOOKS A R, et al. Inactivation of rabies virus [J]. Journal of Virological Methods, 2017, 243: 109-112. doi: 10.1016/j.jviromet.2017.02.002
|
[104] |
MANNING E P, STEPHENS M D, DUFRESNE S, et al. Disinfection of Pseudomonas aeruginosa from N95 respirators with ozone: A pilot study [J]. BMJ Open Respiratory Research, 2021, 8(1): e000781. doi: 10.1136/bmjresp-2020-000781
|
[105] |
DING W Q, JIN W B, CAO S, et al. Ozone disinfection of chlorine-resistant bacteria in drinking water [J]. Water Research, 2019, 160: 339-349. doi: 10.1016/j.watres.2019.05.014
|
[106] |
HUDSON J B, SHARMA M, VIMALANATHAN S. Development of a practical method for using ozone gas as a virus decontaminating agent [J]. Ozone:Science & Engineering, 2009, 31(3): 216-223.
|
[107] |
ARJMAND M M, NADERI M, GHOLAMI S. Investigation of the survival of bacteria under the influence of supporting electrolytes KCl, CuI and NaBr in the electrochemical method [J]. Pizhūhish Dar Bihdāsht-i Muḥīṭ., 2018, 4(2): 104-111.
|
[108] |
张淼, 李鹏飞, 孙文娟, 等. 过氧戊二酸对公共场所空气消毒效果分析 [J]. 沈阳医学院学报, 2006, 8(2): 147-149. doi: 10.3969/j.issn.1008-2344.2006.02.039
ZHANG M, LI P F, SUN W J, et al. Study on disinfecting public rooms with perglutaric acid [J]. Journal of Shenyang Medical College, 2006, 8(2): 147-149(in Chinese). doi: 10.3969/j.issn.1008-2344.2006.02.039
|
[109] |
谭金煜, 尹世辉, 张馨心, 等. 过氧乙酸在医院内空气消毒中的效果分析 [J]. 中国卫生标准管理, 2017, 8(18): 129-130. doi: 10.3969/j.issn.1674-9316.2017.18.068
TAN J Y, YIN S H, ZHANG X X, et al. Effect of peracetic acid on disinfection of air in hospital [J]. China Health Standard Management, 2017, 8(18): 129-130(in Chinese). doi: 10.3969/j.issn.1674-9316.2017.18.068
|
[110] |
TSO K M, NI B, WONG H C. Oxidative disinfectants activate different responses in Vibrio parahaemolyticus [J]. Journal of Food Protection, 2019, 82(11): 1890-1895. doi: 10.4315/0362-028X.JFP-19-191
|
[111] |
CHHETRI R K, BAUN A, ANDERSEN H R. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2−) [J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 570-574. doi: 10.1016/j.ijheh.2016.11.011
|
[112] |
MONTAGNA M T, TRIGGIANO F, BARBUTI G, et al. Study on the in vitro activity of five disinfectants against nosocomial bacteria [J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1895. doi: 10.3390/ijerph16111895
|
[113] |
BARBUT F, MENUET D, VERACHTEN M, et al. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores [J]. Infection Control and Hospital Epidemiology, 2009, 30(6): 507-514. doi: 10.1086/597232
|
[114] |
KINGSLEY D H, VINCENT E M, MEADE G K, et al. Inactivation of human norovirus using chemical sanitizers [J]. International Journal of Food Microbiology, 2014, 171: 94-99. doi: 10.1016/j.ijfoodmicro.2013.11.018
|
[115] |
LINEBACK C B, NKEMNGONG C A, WU S T, et al. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds [J]. Antimicrobial Resistance & Infection Control, 2018, 7(1): 154.
|
[116] |
SCHOLTZ V, PAZLAROVA J, SOUSKOVA H, et al. Nonthermal plasma—a tool for decontamination and disinfection [J]. Biotechnology Advances, 2015, 33(6): 1108-1119. doi: 10.1016/j.biotechadv.2015.01.002
|
[117] |
LAROUSSI M. Low temperature plasma-based sterilization: Overview and state-of-the-art [J]. Plasma Processes and Polymers, 2005, 2(5): 391-400. doi: 10.1002/ppap.200400078
|
[118] |
王妍彦, 张伟, 班海群, 等. 等离子体对空气消毒效果影响因素的研究 [J]. 中国卫生检验杂志, 2014, 24(10): 1463-1464.
WANG Y Y, ZHANG W, BAN H Q, et al. Study on the influencing factors of plasma in air disinfection effect [J]. Chinese Journal of Health Laboratory Technology, 2014, 24(10): 1463-1464(in Chinese).
|
[119] |
ZHANG H, CHEN M, HUANG L L, et al. Using cold atmospheric plasma treated-air for COVID-19 disinfection in cold-chain environment [J]. Journal of Physics D:Applied Physics, 2021, 54(40): 40LT01. doi: 10.1088/1361-6463/ac13f7
|
[120] |
闫妍, 高亚楠, 李其玮, 等. 等离子体与纳米二氧化钛光触媒协同对室内空气消毒效果研究 [J]. 中国消毒学杂志, 2022, 39(2): 83-86.
YAN Y, GAO Y N, LI Q W, et al. Purification and disinfection effect of indoor air by plasma coupling Ag/TiO2 nanophotocatalysis system [J]. Chinese Journal of Disinfection, 2022, 39(2): 83-86(in Chinese).
|
[121] |
WANG S N, LI J J, LIU Y X, et al. Pulsed xenon ultraviolet and non-thermal atmospheric plasma treatments are effective for the disinfection of air in hospital blood sampling rooms [J]. Photodiagnosis and Photodynamic Therapy, 2019, 27: 137-140. doi: 10.1016/j.pdpdt.2019.05.034
|
[122] |
ELGOHARY E A, MOHAMED Y M A, EL NAZER H A, et al. A review of the use of semiconductors as catalysts in the photocatalytic inactivation of microorganisms [J]. Catalysts, 2021, 11(12): 1498. doi: 10.3390/catal11121498
|
[123] |
王洪波, 崔娅琴, 李莹莹, 等. 水和废水纳米TiO2光催化消毒国外研究进展 [J]. 山东建筑大学学报, 2012, 27(1): 105-110.
WANG H B, CUI Y Q, LI Y Y, et al. Foreign research progress of TiO2 photocatalytic disinfection for water and wastewater [J]. Journal of Shandong Jianzhu University, 2012, 27(1): 105-110(in Chinese).
|
[124] |
FOSTER H A, DITTA I B, VARGHESE S, et al. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity [J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1847-1868. doi: 10.1007/s00253-011-3213-7
|
[125] |
于小迪, 王洪波, 刘麒, 等. 二氧化钛光催化消毒技术在水处理中的研究 [J]. 环境科学与管理, 2013, 38(1): 81-86. doi: 10.3969/j.issn.1673-1212.2013.01.021
YU X D, WANG H B, LIU Q, et al. Application of titanium dioxide photocatalytic disinfection in water treatment [J]. Environmental Science and Management, 2013, 38(1): 81-86(in Chinese). doi: 10.3969/j.issn.1673-1212.2013.01.021
|
[126] |
SUN D, MAO J, CHENG L, et al. Magnetic g-C3N4/NiFe2O4 composite with enhanced activity on photocatalytic disinfection of Aspergillus flavus [J]. Chemical Engineering Journal, 2021, 418: 129417. doi: 10.1016/j.cej.2021.129417
|
[127] |
KHAN S, BEATTIE T K, KNAPP C W. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water [J]. Chemosphere, 2016, 152: 132-141. doi: 10.1016/j.chemosphere.2016.02.086
|
[128] |
WALSH C. Molecular mechanisms that confer antibacterial drug resistance [J]. Nature, 2000, 406(6797): 775-781. doi: 10.1038/35021219
|
[129] |
TONG C Y, HU H, CHEN G, et al. Chlorine disinfectants promote microbial resistance in Pseudomonas sp [J]. Environmental Research, 2021, 199: 111296. doi: 10.1016/j.envres.2021.111296
|
[130] |
HOU A M, YANG D, MIAO J, et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps [J]. Water Research, 2019, 156: 366-371. doi: 10.1016/j.watres.2019.03.035
|
[131] |
LV L, JIANG T, ZHANG S H, et al. Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa [J]. Environmental Science & Technology, 2014, 48(14): 8188-8195.
|
[132] |
林辉, 郑剑, 宋启发, 等. 含氯消毒剂对产β内酰胺酶铜绿假单胞菌杀菌效果的研究 [J]. 中国消毒学杂志, 2008, 25(2): 145-147.
LIN H, ZHENG J, SONG Q F, et al. Study on efficacy of chlorine-containing disinfectant in killing pseudomonas aeruginosa producing β- lactamase [J]. Chinese Journal of Disinfection, 2008, 25(2): 145-147(in Chinese).
|
[133] |
ZHANG Q Q, TIAN G M, JIN R C. The occurrence, maintenance, and proliferation of antibiotic resistance genes (ARGs) in the environment: Influencing factors, mechanisms, and elimination strategies [J]. Applied Microbiology and Biotechnology, 2018, 102(19): 8261-8274. doi: 10.1007/s00253-018-9235-7
|
[134] |
JIN M, LIU L, WANG D N, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial Genera by natural transformation [J]. The ISME Journal, 2020, 14(7): 1847-1856. doi: 10.1038/s41396-020-0656-9
|
[135] |
ZHANG Y, GU A Z, HE M, et al. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across Genera [J]. Environmental Science & Technology, 2017, 51(1): 570-580.
|
[136] |
CHOI H, CHATTERJEE P, HWANG M, et al. Can multidrug-resistant organisms become resistant to ultraviolet (UV) light following serial exposures?Characterization of post-UV genomic changes using whole-genome sequencing [J]. Infection Control and Hospital Epidemiology, 2022, 43(1): 72-78. doi: 10.1017/ice.2021.51
|
[137] |
YE C S, CHEN Y M, FENG L, et al. Effect of the ultraviolet/chlorine process on microbial community structure, typical pathogens, and antibiotic resistance genes in reclaimed water [J]. Frontiers of Environmental Science & Engineering, 2022, 16(8): 100.
|
[138] |
KARR J R. Defining and assessing ecological integrity: Beyond water quality [J]. Environmental Toxicology and Chemistry, 1993, 12(9): 1521-1531. doi: 10.1002/etc.5620120902
|
[139] |
张坤锋, 昌盛, 涂响, 等. 新冠疫情下武汉典型饮用水水源中DBPs污染特征与风险评估 [J]. 环境科学, 2022, 43(2): 878-886. doi: 10.13227/j.hjkx.202106099
ZHANG K F, CHANG S, TU X, et al. Pollution characteristics and risk assessment of DBPs in typical drinking water sources in Wuhan under the COVID-19 pandemic [J]. Environmental Science, 2022, 43(2): 878-886(in Chinese). doi: 10.13227/j.hjkx.202106099
|
[140] |
CUI H J, ZHU X S, ZHU Y J, et al. Ecotoxicological effects of DBPs on freshwater phytoplankton communities in co-culture systems [J]. Journal of Hazardous Materials, 2022, 421: 126679. doi: 10.1016/j.jhazmat.2021.126679
|
[141] |
ALBRICH J M, McCARTHY C A, HURST J K. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 210-214. doi: 10.1073/pnas.78.1.210
|
[142] |
ISSA-ZACHARIA A, KAMITANI Y, MORITA K, et al. Sanitization potency of slightly acidic electrolyzed water against pure cultures of Escherichia coli and Staphylococcus aureus, in comparison with that of other food sanitizers [J]. Food Control, 2010, 21(5): 740-745. doi: 10.1016/j.foodcont.2009.11.002
|
[143] |
SLAUGHTER R J, WATTS M, VALE J A, et al. The clinical toxicology of sodium hypochlorite [J]. Clinical Toxicology, 2019, 57(5): 303-311. doi: 10.1080/15563650.2018.1543889
|
[144] |
MURASHEVYCH B, GIRENKO D, MASLAK H, et al. Acute inhalation toxicity of aerosolized electrochemically generated solution of sodium hypochlorite [J]. Inhalation Toxicology, 2022, 34(1/2): 1-13.
|
[145] |
National Institute for Occupational Safety and Health. NIOSH pocket guide to chemical hazards: No. 2005-149 [S]. 2005.
|
[146] |
LARDIERI A, CHENG C, JONES S C, et al. Harmful effects of chlorine dioxide exposure [J]. Clinical Toxicology, 2021, 59(5): 448-449. doi: 10.1080/15563650.2020.1818767
|
[147] |
AKAMATSU A, LEE C, MORINO H, et al. Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats [J]. Journal of Occupational Medicine and Toxicology, 2012, 7: 2. doi: 10.1186/1745-6673-7-2
|
[148] |
XIA Q D, ZHANG G M, WANG L. Study on subchronic toxicity of chlorine dioxide and by-products in water [J]. Journal of Environmental Science and Health, Part A, 2006, 41(7): 1347-1353. doi: 10.1080/10934520600657016
|
[149] |
COURI D, ABDEL-RAHMAN M S, BULL R J. Toxicological effects of chlorine dioxide, chlorite and chlorate [J]. Environmental Health Perspectives, 1982, 46: 13-17. doi: 10.1289/ehp.824613
|
[150] |
STRATILO C W, CRICHTON M K F, SAWYER T W. Decontamination efficacy and skin toxicity of two decontaminants against Bacillus anthracis [J]. PLoS One, 2015, 10(9): e0138491. doi: 10.1371/journal.pone.0138491
|
[151] |
HARTWIG A, COMMISSION M. Hydrogen peroxide//The MAK Collection for Occupational Health and Safety[M]. 2019: 2108–2113.
|
[152] |
SUENAKA T, ALASKA S, HIRATA M. A survey of occupational exposure to hydrogen peroxide-H2O2exposure level and its effects on lipid peroxide and its related enzyme activities//Proceedings of Osaka Prefecture Institute of Public Health, Edition of Industrial Health[C]. 1984.
|
[153] |
European Chemical Industry Council (CEFIC). Hydrogen peroxide: 28-day inhalation study: 2002–0082-DKT [S]. 2002.
|
[154] |
MOHANAN P V, SANGEETHA V, SABAREESWARAN A, et al. Safety of 0.5% hydrogen peroxide mist used in the disinfection gateway for COVID-19 [J]. Environmental Science and Pollution Research International, 2021, 28(47): 66602-66612. doi: 10.1007/s11356-021-15164-y
|
[155] |
PASCUAL A, LLORCA I, CANUT A. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities [J]. Trends in Food Science & Technology, 2007, 18: S29-S35.
|
[156] |
POPPENDIECK D, HUBBARD H, WARD M, et al. Ozone reactions with indoor materials during building disinfection [J]. Atmospheric Environment, 2007, 41(15): 3166-3176. doi: 10.1016/j.atmosenv.2006.06.060
|
[157] |
VITHU P, DEB B R, RANJIT S, et al. Ozone technology in food processing: A review [J]. Trends in Biosciences, 2016, 8(16): 4031-4047.
|
[158] |
GULAFSHA M, MDS A P. Miracle of ozone in dentistry: An overview [J]. World Journal of Pharmaceutical Research, 2019, 8(3): 665-677.
|
[159] |
NIU Y, CHEN R J, XIA Y J, et al. Personal ozone exposure and respiratory inflammatory response: The role of DNA methylation in the arginase-nitric oxide synthase pathway [J]. Environmental Science & Technology, 2018, 52(15): 8785-8791.
|
[160] |
VIOLA K S, RODRIGUES E M, TANOMARU-FILHO M, et al. Cytotoxicity of peracetic acid: Evaluation of effects on metabolism, structure and cell death [J]. International Endodontic Journal, 2017, 51: e264-e277.
|
[161] |
CHHETRI R K, BAUN A, ANDERSEN H R. Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite [J]. Science of the Total Environment, 2019, 677: 1-8. doi: 10.1016/j.scitotenv.2019.04.350
|
[162] |
SMALL D A, CHANG W, TOGHROL F, et al. Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa [J]. Applied Microbiology and Biotechnology, 2007, 76(5): 1093-1105. doi: 10.1007/s00253-007-1072-z
|