[1] SONG C, ZHAO C, WANG Q, et al. Impact of carbon/nitrogen ratio on the performance and microbial community of sequencing batch biofilm reactor treating synthetic mariculture wastewater [J]. Journal of Environmental Management, 2021, 298: 113528. doi: 10.1016/j.jenvman.2021.113528
[2] 王建辉, 游庆国, 申渝, 等. 短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展 [J]. 环境化学, 2021, 40(4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302 WANG J H, YOU Q G, SHEN Y, et al. Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process [J]. Environmental Chemistry, 2021, 40(4): 1216-1231(in Chinese). doi: 10.7524/j.issn.0254-6108.2020091302
[3] 毛世超, 王燕萍, 陈芳媛. 低碳氮比废水好氧颗粒污泥系统稳定性及微生物种群多样性研究 [J]. 环境化学, 2021, 40(3): 904-913. doi: 10.7524/j.issn.0254-6108.2019101105 MAO S C, WANG Y P, CHEN F Y. Stability and microbial diversity of the aerobic granular sludge under low carbon to nitrogen ratio [J]. Environmental Chemistry, 2021, 40(3): 904-913(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101105
[4] WU B, DAI X, CHAI X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations [J]. Water Research, 2020, 180: 115912. doi: 10.1016/j.watres.2020.115912
[5] YANG S S, YU X L, DING M Q, et al. Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network [J]. Water Research, 2021, 189: 116576. doi: 10.1016/j.watres.2020.116576
[6] XU X, MA B, LU W, et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage [J]. Bioresource Technology, 2020, 297: 122467. doi: 10.1016/j.biortech.2019.122467
[7] CHENG Y, LI J Y, REN X, et al. High efficiency of simultaneous nitrification, denitrification, and organics removal in the real-scale treatment of high C/N ratio food-processing wastewater using micro-aerobic reactors [J]. Biochemical Engineering Journal, 2022, 177: 108218. doi: 10.1016/j.bej.2021.108218
[8] FU X, HOU R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review [J]. Science of the Total Environment, 2022: 153061.
[9] CASTELLAR J A C, FORMOSA J, FERNÁNDEZ A I, et al. Cork as a sustainable carbon source for nature-based solutions treating hydroponic wastewaters–Preliminary batch studies [J]. Science of the Total Environment, 2019, 650: 267-276. doi: 10.1016/j.scitotenv.2018.08.365
[10] 唐玉朝, 陈徐庆, 薛莉娉, 等. 两段SBR串联工艺处理低C/N城市污水的效率研究 [J]. 环境科学与技术, 2022, 45(5): 15-21. TANG Y C, CHEN X Q, XUE L P, et al. Study on biological denitrification efficiency of two-stage sbr reactor for treatment of municipal wastewater with low C/N ratio [J]. Environmental Science & Technology, 2022, 45(5): 15-21(in Chinese).
[11] CAI X, HU C H, WANG J, et al. Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode [J]. Bioresource Technology, 2021, 326: 124768. doi: 10.1016/j.biortech.2021.124768
[12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods [M]. 4th edition. Beijing: China Environmental Science Press, 2002(in Chinese).
[13] LI L, HE Z, LIANG T, et al. Colonization of biofilm in wastewater treatment: A review [J]. Environmental Pollution, 2022, 293: 118514. doi: 10.1016/j.envpol.2021.118514
[14] HONG Q K, ZHANG H L, ZHANG S X. Study on the efficiency treatment of polluted water by biofilm process filled with bamboo filler [J]. Strategic Planning for Energy and the Environment, 2022, 41(3): 4131.
[15] ZHANG L, CUI B, YUAN B, et al. Denitrification mechanism and artificial neural networks modeling for low-pollution water purification using a denitrification biological filter process [J]. Separation and Purification Technology, 2021, 257: 117918. doi: 10.1016/j.seppur.2020.117918
[16] LIU J, FU X, YUAN R, et al. Carbon sources derived from corncobs enhanced nitrogen removal in SBBR treating low C/N domestic sewage [J]. Process Safety and Environmental Protection, 2022, 166: 628-637. doi: 10.1016/j.psep.2022.08.063
[17] WANG Z, ZHENG M, HE C, et al. Enhanced treatment of low-temperature and low carbon/nitrogen ratio wastewater by corncob-based fixed bed bioreactor coupled sequencing batch reactor [J]. Bioresource Technology, 2022, 351: 126975. doi: 10.1016/j.biortech.2022.126975
[18] WANG F, XU S, LIU L, et al. One-stage partial nitrification and anammox process in a sequencing batch biofilm reactor: Start-up, nitrogen removal performance and bacterial community dynamics in response to temperature [J]. Science of the Total Environment, 2021, 772: 145529. doi: 10.1016/j.scitotenv.2021.145529
[19] 孙洪伟, 陈翠忠, 吴长峰, 等. 温度对SBR生物脱氮效能及胞外聚合物的影响 [J]. 环境科学, 2017, 38(11): 4648-4655. SUN H W, CHEN C Z, WU C F, et al. Effect of Temperature on Nitrogen Removal Performance and the Extracellular Polymeric Substance (EPS) in a Sequencing Batch Reactor (SBR) [J]. Environmental Science, 2017, 38(11): 4648-4655(in Chinese).
[20] WAGNG X, YE C, ZHANG Z, et al. Effects of temperature shock on N2O emissions from denitrifying activated sludge and associated active bacteria [J]. Bioresource Technology, 2018, 249: 605-611. doi: 10.1016/j.biortech.2017.10.070
[21] BHATTACHARYA R, MAZUMDER D. Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems [J]. Bioprocess and Biosystems Engineering, 2021, 44(4): 635-652. doi: 10.1007/s00449-020-02475-6
[22] LI C, LIU S, MA T, et al. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature [J]. Chemosphere, 2019, 229: 132-141. doi: 10.1016/j.chemosphere.2019.04.185
[23] HENDRASARIE N, ZARFANDI F I, ROSARIAWARI F, et al. Addition of fixed bed biofilm in sequencing batch reactor to remove carbon-nitrogen for apartment wastewater[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021, 1125(1): 012089.
[24] WAN A, ZHAO B, XIE Y, et al. Study on the effect of new type of suspended carrier on oxygen mass transfer characteristics [J]. Environmental Science and Pollution Research, 2021, 28(27): 36911-36923. doi: 10.1007/s11356-021-14371-x
[25] RAJTA A, BHATIA R, SETIA H, et al. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater [J]. Journal of applied microbiology, 2020, 128(5): 1261-1278. doi: 10.1111/jam.14476
[26] XIONG R, YU X, ZHANG Y, et al. Comparison of agricultural wastes and synthetic macromolecules as solid carbon source in treating low carbon nitrogen wastewater [J]. Science of the Total Environment, 2020, 739: 139885. doi: 10.1016/j.scitotenv.2020.139885
[27] 凌宇, 赵远哲, 王海燕, 等. HRT对A/O-BF处理低碳氮比农村生活污水脱氮的影响 [J]. 环境科学研究, 2021, 34(4): 927-935. LING Y, ZHAO Y Z, WANG H Y, et al. Effects of HRT on A/O-BF Nitrogen Removal of Low C/N Rural Domestic Sewage [J]. Research of Environment Sciences, 2021, 34(4): 927-935(in Chinese).
[28] YAN L, LIU S, LIU Q, et al. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO [J]. Bioresource Technology, 2019, 275: 153-162. doi: 10.1016/j.biortech.2018.12.054
[29] ZHENG Z, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration [J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148
[30] PAN Z, ZHOU J, LIN Z, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process [J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726
[31] CAO S, DU R, PENG Y, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage [J]. Chemical Engineering Journal, 2019, 362: 107-115. doi: 10.1016/j.cej.2018.12.160
[32] LU W, ZHANG Y, WANG Q, et al. Achieving advanced nitrogen removal in a novel partialdenitrification/anammox-nitrifying (PDA-N) biofilter process treating low C/N ratio municipal wastewater [J]. Bioresource Technology, 2021, 340: 125661. doi: 10.1016/j.biortech.2021.125661
[33] HU B, QUAN J, HUANG K, et al. Effects of C/N ratio and dissolved oxygen on aerobic denitrification process: A mathematical modeling study [J]. Chemosphere, 2021, 272: 129521. doi: 10.1016/j.chemosphere.2020.129521
[34] CHEN X, ZHANG Q, ZHU Y, et al. Response of wastewater treatment performance, microbial composition and functional genes to different C/N ratios and carrier types in MBBR inoculated with heterotrophic nitrification-aerobic denitrification bacteria [J]. Bioresource Technology, 2021, 336: 125339. doi: 10.1016/j.biortech.2021.125339
[35] ALBINA P, DURBAN N, BERTRON A, et al. Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: a review [J]. International Journal of Molecular Sciences, 2019, 20(20): 5163. doi: 10.3390/ijms20205163
[36] 王登敏, 张立秋, 李淑更, 等. 玉米芯固体碳源生物膜SND处理低碳源污水[J]. 环境科学与技术, 2018, 41(10): 99-104. WANG D M, ZHANG L Q, LI S G, et al. SND treatment of low-carbon source sewage with corncob solid carbon source biofilm [J]. Environmental Science & Technology 2018, 41(10): 99-104(in Chinese).
[37] CAO X, ZHOU X, XUE M, et al. Evaluation of nitrogen removal and N2O emission in a novel anammox coupled with sulfite-driven autotrophic denitrification system: Influence of pH [J]. Journal of Cleaner Production, 2021, 321: 128984. doi: 10.1016/j.jclepro.2021.128984
[38] SRIWIRIYARAT T, NUCHLEK P. Effects of pH on extracellular polymeric substances compositions of biofilm in integrated fixed film activated sludge process [J]. International Journal of Environmental Science and Technology, 2022, 19(1): 73-84. doi: 10.1007/s13762-021-03316-z
[39] WANG J, RONG H, GAO Y, et al. Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures [J]. Bioprocess and Biosystems Engineering, 2020, 43(10): 1833-1846. doi: 10.1007/s00449-020-02374-w