[1] NISHI Y, MIYATA T, MINAMI T. Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications [J]. Solar Energy Materials and Solar Cells, 2016, 155: 405-410. doi: 10.1016/j.solmat.2016.06.013
[2] PENG L P, WEI H N, TIAN L, et al. Phospholipid/protein co-mediated assembly of Cu2O nanoparticles for specific inhibition of growth and biofilm formation of pathogenic fungi [J]. Science China Materials, 2021, 64(3): 759-768. doi: 10.1007/s40843-020-1457-1
[3] YANAGIDA S, YAJIMA T, TAKEI T, et al. Removal of hexavalent chromium from water by Z-scheme photocatalysis using TiO2 (rutile) nanorods loaded with Au core-Cu2O shell particles [J]. Journal of Environmental Sciences, 2022, 115: 173-189. doi: 10.1016/j.jes.2021.05.025
[4] ZHANG X, FENG Y C, GAO D C, et al. Functionalization of cellulosic hydrogels with Cu2O@CuO nanospheres: Toward antifouling applications [J]. Carbohydrate Polymers, 2022, 282: 119136. doi: 10.1016/j.carbpol.2022.119136
[5] SCHRODER S, ABABII N, LUPAN O, et al. Sensing performance of CuO/Cu2O/ZnO: Fe heterostructure coated with thermally stable ultrathin hydrophobic PV3D3 polymer layer for battery application [J]. Materials Today Chemistry, 2022, 23: 100642. doi: 10.1016/j.mtchem.2021.100642
[6] 杨开, 徐云兰, 钟登杰. C-TiO2/Ti-Cu2O/Cu光催化燃料电池的性能 [J]. 环境化学, 2018, 37(1): 108-114. doi: 10.7524/j.issn.0254-6108.2017071302 YANG K, XU Y L, ZHONG D J. Performance of C-TiO2/Ti-Cu2O/Cu photocatalytic fuel cell [J]. Environmental Chemistry, 2018, 37(1): 108-114(in Chinese). doi: 10.7524/j.issn.0254-6108.2017071302
[7] MAO P, LIU Y, LIU X, et al. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution [J]. Chemosphere, 2017, 180: 317-325. doi: 10.1016/j.chemosphere.2017.04.038
[8] LIU F, LIU Q, LIU Y, et al. Synthesis and photocatalytic activity of cubic cuprous oxide supported on activated carbon fibers [J]. Chemical Physics Letters, 2019, 718: 54-62. doi: 10.1016/j.cplett.2019.01.011
[9] BORAH R, SAIKIA E, BORA S J, et al. On-water synthesis of phenols using biogenic Cu2O nanoparticles without using H2O2 [J]. RSC Advances, 2016, 6(102): 100443-100447. doi: 10.1039/C6RA22972G
[10] ARAM K, NALLAL M, CHOHYE Y, et al. MOF-derived Cu@Cu2O nanocatalyst for oxygen reduction reaction and cycloaddition reaction [J]. Nanomaterials, 2018, 8(3): 138. doi: 10.3390/nano8030138
[11] AMRANI M A, SRIKANTH V V S S, LABHSETWAR N K, et al. Phoenix dactylifera mediated green synthesis of Cu2O particles for arsenite uptake from water [J]. Science and Technology of Advanced Materials, 2016, 17(1): 760-768. doi: 10.1080/14686996.2016.1244472
[12] XIAO C Y, LI H Y, ZHAO Y, et al. Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes [J]. Journal of Environmental Management, 2020, 275: 111262. doi: 10.1016/j.jenvman.2020.111262
[13] 田利强, 龙康, 陈秀清. 绿色合成膨胀石墨负载纳米零价铁去除水中Cd(Ⅱ) [J]. 环境化学, 2021, 40(12): 3909-3918. doi: 10.7524/j.issn.0254-6108.2020081104 TIAN L Q, LONG K, CHEN X Q. Research on removal of cadmium(Ⅱ) by green synthesized nanoscale zero-valent iron supported on expanded graphite [J]. Environmental Chemistry, 2021, 40(12): 3909-3918(in Chinese). doi: 10.7524/j.issn.0254-6108.2020081104
[14] GOPALAKRISHNAN K, RAMESH C, RAGUNATHAN V, et al. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from tridax procumbens leaf extract and surface coating with polyaniline [J]. Digest Journal of Nanomaterials & Biostructures, 2012, 7(2): 833-839.
[15] QIN C Y, ZHAO Y S, LI L L, et al. Mechanisms of surfactant-enhanced air sparging in different media [J]. Journal of Environmental Science and Health. Part A-Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(9): 1047-1055.
[16] SU Y, ZHAO Y S, LI L L, et al. Transport characteristics of nanoscale zero-valent iron carried by three different “vehicles” in porous media [J]. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(14): 1639-1652.
[17] ERROKH A, FERRARIA A M, Conceição D S, et al. Controlled growth of Cu2O nanoparticles bound to cotton fibres [J]. Carbohydrate Polymers, 2016, 141: 229-237. doi: 10.1016/j.carbpol.2016.01.019
[18] SEDIGHI A, MONTAZER M, SAMADI N. Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations [J]. Carbohydr Polym, 2014, 110: 489-498. doi: 10.1016/j.carbpol.2014.04.030
[19] SVETLICHNYI V A, GONCHAROVA D A, SHABALINA A V, et al. Cu2O water dispersions and nano-Cu2O/fabric composite: preparation by pulsed laser ablation, characterization and antibacterial properties [J]. Nano Hybrids and Composites, 2017, 13: 75-81. doi: 10.4028/www.scientific.net/NHC.13.75
[20] 李奇, 田杜, 陈韶云, 等. 银纳米片在无纺布纤维上的可控组装及其SERS效应 [J]. 高等学校化学学报, 2021, 42(3): 736-744. LI Q, TIAN D, CHEN S Y, et al. Controllable assembling of silver nanosheets on non-woven fabric fibers and its SERS effect [J]. Chemical Journal of Chinese Universities, 2021, 42(3): 736-744(in Chinese).
[21] PANHWAR R, SAHITO I A, KHATRI A, et al. Improved photocatalytic activity of nonwoven fabric coated with graphene by a novel elevated temperature padding method [J]. Materials Chemistry and Physics, 2021, 262: 124294. doi: 10.1016/j.matchemphys.2021.124294
[22] 刘馨钰, 张永丽, 张怡, 等. 铁酸铋可见光催化过一硫酸盐去除金橙Ⅱ [J]. 化学研究与应用, 2019, 31(5): 887-893. LIU X Y, ZHANG Y L, ZHANG Y, et al. BiFeO3 visible-light photocatalysis peroxymonosulfate for removal of orange Ⅱ [J]. Chemical Research and Application, 2019, 31(5): 887-893(in Chinese).
[23] 吴正雷, 彭文博, 董凯, 等. Ni基催化剂处理甲基橙废水动力学及机理研究 [J]. 当代化工, 2020, 49(5): 850-854. WU Z L, PENG W B, DONG K, et al. Research on kinetics and mechanism of degradation of methyl orange wastewater catalyzed by Ni-based catalysts [J]. Contemporary Chemical Industry, 2020, 49(5): 850-854(in Chinese).
[24] LIU J, GAO Z, HAN H, et al. Mesoporous Cu2O submicro-spheres, facile synthesis and the selective adsorption properties [J]. Chemical Engineering Journal, 2012, 185-186: 151-159. doi: 10.1016/j.cej.2012.01.064
[25] 刘晓勤, 孙林兵, 蒋文娟, 等. 一种负载型氧化亚铜吸附剂、制备方法、应用及再生方法: CN103007874B[P].2014-12-31. LIU X Q, SUN L B, JIANG W J, et al. Supported cuprous oxide adsorbent as well as preparation method, application and regeneration method: CN103007874B[P]. 2014-12-31 (in Chinese).