[1] |
FENG Q, GUO W, WANG T, et al. Iron coupling with carbon fiber to stimulate biofilms formation in aerobic biological film systems for improved decentralized wastewater treatment: Performance, mechanisms and implications[J]. Bioresource Technology, 2021, 319: 124151. doi: 10.1016/j.biortech.2020.124151
|
[2] |
HONG Y, HUANG G, AN C, et al. Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights[J]. Journal of Environmental Management, 2019, 240: 273-284.
|
[3] |
徐宇峰. 低氧活性污泥法除污及污泥减量研究[D]. 重庆: 重庆大学, 2014.
|
[4] |
EISENBERG D M, KOOPMAN B, BENEMANN J R, et al. Algal bioflocculation and energy conservation in microalgal sewage ponds[C]//Biotechnol. Bioeng. Symp. ;(United States). 1981, 11(CONF-810554-).
|
[5] |
TRICOLICI O, BUMBAC C, PATROESCU V, et al. Dairy wastewater treatment using an activated sludge–microalgae system at different light intensities[J]. Water Science and Technology, 2014, 69(8): 1598-1605. doi: 10.2166/wst.2013.752
|
[6] |
NGUYEN T T, BINH Q A, BUI X T, et al. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios[J]. Bioresource Technology, 2020, 314: 123754. doi: 10.1016/j.biortech.2020.123754
|
[7] |
SU Y, MENNERICH A, URBAN B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios[J]. Bioresource Technology, 2012, 105: 67-73. doi: 10.1016/j.biortech.2011.11.113
|
[8] |
LIANG Z, LIU Y, GE F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis[J]. Chemosphere, 2013, 92(10): 1383-1389. doi: 10.1016/j.chemosphere.2013.05.014
|
[9] |
LIANG Z, LIU Y, GE F, et al. A pH-dependent enhancement effect of co-cultured Bacillus licheniformis on nutrient removal by Chlorella vulgaris[J]. Ecological Engineering, 2015, 75: 258-263. doi: 10.1016/j.ecoleng.2014.11.040
|
[10] |
许子聪, 李海松, 胡培基. 污泥膨胀对反硝化中试反应器效能及菌群结构的影响[J]. 环境工程技术学报, 2019, 9(2): 139-144. doi: 10.12153/j.issn.1674-991X.2018.10.300
|
[11] |
HELLINGA C, SCHELLEN A, MULDER J W, et al. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9): 135-142. doi: 10.2166/wst.1998.0350
|
[12] |
CAI T, PARK S Y, LI Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 360-369. doi: 10.1016/j.rser.2012.11.030
|
[13] |
XU J, WANG X, SUN S, et al. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage[J]. Scientific Reports, 2017, 7(1): 1-13. doi: 10.1038/s41598-016-0028-x
|
[14] |
HE S, XUE G, WANG B. Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor[J]. Journal of Hazardous Materials, 2009, 168(2/3): 704-710.
|
[15] |
王迪. 不同碳源对好氧颗粒污泥性质影响的研究[D]. 大连: 大连理工大学, 2006.
|
[16] |
SU Y, MENNERICH A, URBAN B. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors[J]. Bioresource Technology, 2012, 118: 469-476. doi: 10.1016/j.biortech.2012.05.093
|
[17] |
JI B, ZHANG M, WANG L, et al. Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process[J]. Bioresource Technology, 2020, 312: 123531. doi: 10.1016/j.biortech.2020.123531
|
[18] |
JAVED M A, ZAFAR A M, HASSAN A A. Regulate oxygen concentration using a co-culture of activated sludge bacteria and Chlorella vulgaris to maximize biophotolytic hydrogen production[J]. Algal Research, 2022, 63: 102649. doi: 10.1016/j.algal.2022.102649
|
[19] |
徐金兰, 王志盈, 杨永哲, 等. ABR 的启动与颗粒污泥形成特征[J]. 环境科学学报, 2003, 23(5): 575-581. doi: 10.3321/j.issn:0253-2468.2003.05.003
|
[20] |
LIU Y Q, KONG Y H, ZHANG R, et al. Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periods[J]. Water Science and Technology, 2010, 62(6): 1281-1287. doi: 10.2166/wst.2010.408
|
[21] |
DIEZ-VIVES C, GASOL J M, ACIANS S G. Evaluation of marine Bacteroidetes-specific primers for microbial diversity and dynamics studies[J]. Microbial Ecology, 2012, 64(4): 1047-1055. doi: 10.1007/s00248-012-0087-x
|
[22] |
CHIELLINI C, MUNZ G, PETRONI G, et al. Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: A focus on nitrospira and planctomycetes bacterial phyla[J]. Current Microbiology, 2013, 67(1): 77-90. doi: 10.1007/s00284-013-0333-6
|
[23] |
HUANG X, MI W, ITO H, et al. Unclassified anammox bacterium responds to robust nitrogen removal in a sequencing batch reactor fed with landfill leachate[J]. Bioresource Technology, 2020, 316: 123959. doi: 10.1016/j.biortech.2020.123959
|
[24] |
MOHSENPOUR S F, HENNIGE S, WILLOUGHBY N, et al. Integrating micro-algae into wastewater treatment: A review[J]. Science of The Total Environment, 2021, 752: 142168. doi: 10.1016/j.scitotenv.2020.142168
|
[25] |
DING Y, MIAO J L, WANG Q F, et al. Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L[J]. Polar Biology, 2007, 31(1): 23-30. doi: 10.1007/s00300-007-0328-5
|
[26] |
MICHAUD L, GIUDICE A L, TROUSSELLIER M, et al. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system[J]. Journal of Applied Microbiology, 2010, 107(6): 1935-1946.
|
[27] |
WANG Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521. doi: 10.1016/j.cej.2017.02.096
|
[28] |
仇潇洒. 陶厄氏菌属(Thauera)富集的SBR系统脱氮性能研究[D]. 西安: 长安大学, 2020.
|
[29] |
ZHANG Y, CHEN L, SUN R, et al. Effect of wastewater disposal on the bacterial and archaeal community of sea sediment in an industrial area in China[J]. FEMS Microbiology Ecology, 2014, 88(2): 320-332. doi: 10.1111/1574-6941.12298
|
[30] |
DU R, CAO S, LI B, et al. Step-feeding organic carbon enhances high-strength nitrate and ammonia removal via DEAMOX process[J]. Chemical Engineering Journal, 2019, 360: 501-510. doi: 10.1016/j.cej.2018.12.011
|
[31] |
RYU S H, NGUYEN T T H, PARK W, et al. Runella limosa sp. nov., isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(12): 2757-2760. doi: 10.1099/ijs.0.64460-0
|
[32] |
LIU J, ZHANG H, ZHANG P, et al. Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: pollutant removal performances and microbial community[J]. Bioresource Technology, 2017, 243: 738-746. doi: 10.1016/j.biortech.2017.07.002
|
[33] |
YU W, LAWRENCE N C, SOOKSA-NGUAN T, et al. Microbial linkages to soil biogeochemical processes in a poorly drained agricultural ecosystem[J]. Soil Biology and Biochemistry, 2021, 156: 108228. doi: 10.1016/j.soilbio.2021.108228
|
[34] |
YANG Y, QUENSEN J, MATHIEU J, et al. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge[J]. Water Research, 2014, 48: 317-325. doi: 10.1016/j.watres.2013.09.046
|
[35] |
董怡华, 张雪莹, 邹立安, 等. 耐低温好氧反硝化菌Aeromonas sp. 的分离鉴定及脱氮条件优化[J]. 微生物学报2022, 62(6): 2038-2052.
|
[36] |
JI J, KULSHRESHTHA S, KAKADE A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater[J]. International Biodeterioration & Biodegradation, 2020, 150: 104939.
|
[37] |
ZHANG J, HU B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets[J]. Bioresource Technology, 2012, 114: 529-535. doi: 10.1016/j.biortech.2012.03.054
|
[38] |
刘春梅, 魏文学, 盛荣, 等. 氧化亚氮还原酶基因nosZⅡ及与环境的关系研究进展[J]. 应用与环境生物学报, 2018, 24(3): 651-656. doi: 10.19675/j.cnki.1006-687x.2017.08016
|
[39] |
YANG R, YUAN L, WANG R, et al. New insight on the regulation of N2O production in aerobic condition: An N2O metabolic perspective based on enzymatic analysis of nitrous oxide reductase[J]. Journal of Water Process Engineering, 2021, 41: 102090. doi: 10.1016/j.jwpe.2021.102090
|
[40] |
郑林雪, 李军, 胡家玮, 等. 同步硝化反硝化系统中反硝化细菌多样性研究[J]. 中国环境科学, 2015, 35(1): 116-121.
|
[41] |
闫旭, 韩云平, 刘俊新. A2O工艺中N2O的产生与逸散特征[J]. 环境工程学报, 2014, 8(2): 592-598.
|