[1] 刘菲, 赵胜勇, 刘启龙. 高铁酸钾氧化处理对氯苯酚废水的研究[J]. 应用化工, 2021, 50(3): 684-686. doi: 10.3969/j.issn.1671-3206.2021.03.025
[2] WATKINS M, SIZOCHENKO N, MOORE Q, et al. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure–property relationship analysis[J]. Journal of Molecular Modeling, 2017, 23(2): 23-39.
[3] 姚宏嘉, 陈星, 张玉, 等. 生物炭负载γ-MnO_2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理[J]. 环境工程学报, 2022, 16(6): 1833-1844. doi: 10.12030/j.cjee.202201078
[4] 李峰, 杨宝山, 王惠, 等. 开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应[J]. 环境工程学报, 2021, 15(9): 3035-3045. doi: 10.12030/j.cjee.202105073
[5] PATEL D, BAPODRA S L, MADAMWAR D, et al. Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater[J]. Bioresource Technology, 2021, 332: 125088. doi: 10.1016/j.biortech.2021.125088
[6] 赵联芳, 于雪晴, 路宗仁, 等. FeS对CW-MFC系统降解活性艳红X-3B效果及过程的影响[J]. 中国环境科学, 2022, 42(7): 3093-3102. doi: 10.3969/j.issn.1000-6923.2022.07.012
[7] FANG Z, SONG H L, CANG N, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J]. Bioresource Technology, 2013, 144: 165-171. doi: 10.1016/j.biortech.2013.06.073
[8] SONG H L, LI H, ZHANG S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. doi: 10.1016/j.cej.2018.06.035
[9] DOHERTY L, ZHAO Y, ZHAO X, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J]. Chemical Engineering Journal, 2015, 266: 74-81. doi: 10.1016/j.cej.2014.12.063
[10] VILLASENOR J, CAPILLA P, RODRIGO M A, et al. Operation of a horizontal subsurface flow constructed wetland - Microbial fuel cell treating wastewater under different organic loading rates[J]. Water Research, 2013, 47(17): 6731-6738. doi: 10.1016/j.watres.2013.09.005
[11] YADAV A K, DASH P, MOHANTY A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J]. Ecological Engineering, 2012, 47: 126-131. doi: 10.1016/j.ecoleng.2012.06.029
[12] XU L, ZHAO Y, WANG T, et al. Energy capture and nutrients removal enhancement through a stacked constructed wetland incorporated with microbial fuel cell[J]. Water Science and Technology, 2017, 76(1): 28-34. doi: 10.2166/wst.2017.168
[13] ZHANG S, YANG X L, LI H, et al. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J]. Bioresource Technology, 2017, 244: 345-352. doi: 10.1016/j.biortech.2017.07.143
[14] REN B, WANG T, ZHAO Y. Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation[J]. Chemosphere, 2021, 268: 128803. doi: 10.1016/j.chemosphere.2020.128803
[15] SRIVASTAVA P, YADAV A K, GARANIYA V, et al. Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: A new process[J]. Science of The Total Environment, 2020, 698: 134248. doi: 10.1016/j.scitotenv.2019.134248
[16] TAMTA P, RANI N, YADAV A K. Enhanced wastewater treatment and electricity generation using stacked constructed wetland–microbial fuel cells[J]. Environmental Chemistry Letters, 2020, 18(3): 871-879. doi: 10.1007/s10311-020-00966-2
[17] DOHERTY L, ZHAO Y. Operating a two-stage microbial fuel cell-constructed wetland for fuller wastewater treatment and more efficient electricity generation[J]. Water Science and Technology, 2015, 72(3): 421-428. doi: 10.2166/wst.2015.212
[18] 王超, 王义安, 林华, 等. 对氯苯酚胁迫下李氏禾的净化性能、生长状态及生理生化响应[J]. 应用与环境生物学报, 2022, 28(3): 662-667. doi: 10.19675/j.cnki.1006-687x.2021.01004
[19] 王义安, 张学洪, 郑君健, 等. 不同基质碳源下人工湿地微生物燃料电池的电化学性能及微生物群落结构[J]. 环境工程学报, 2021, 15(11): 3696-3706. doi: 10.12030/j.cjee.202108060
[20] ZHANG K, YANG S, LUO H, et al. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration[J]. Chemosphere, 2022, 299: 134376. doi: 10.1016/j.chemosphere.2022.134376
[21] LIU S, SONG H, WEI S, et al. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland: Microbial fuel cell systems[J]. Bioresource Technology, 2014, 166: 575-583. doi: 10.1016/j.biortech.2014.05.104
[22] WANG G, GUO Y, CAI J, et al. Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell[J]. RSC Advances, 2019, 9(37): 21460-21472. doi: 10.1039/C8RA10130B
[23] WANG J, HE M-F, ZHANG D, et al. Simultaneous degradation of tetracycline by a microbial fuel cell and its toxicity evaluation by zebrafish[J]. RSC Advances, 2017, 7(70): 44226-44233. doi: 10.1039/C7RA07799H
[24] LIU J, ZHANG X H, YOU S H, et al. Function of Leersia hexandra Swartz in constructed wetlands for Cr(VI) decontamination: A comparative study of planted and unplanted mesocosms[J]. Ecological Engineering, 2015, 81: 70-75. doi: 10.1016/j.ecoleng.2015.04.025
[25] SONAWANE J M, AL-SAADI S, SINGH RAMAN R K, et al. Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells[J]. Electrochimica Acta, 2018, 268: 484-493. doi: 10.1016/j.electacta.2018.01.163
[26] 周品成, 刘希强, 康兴生, 等. 4种水生植物对兽用抗生素去除效果比较[J]. 华南农业大学学报, 2019, 40(6): 67-73. doi: 10.7671/j.issn.1001-411X.201901020
[27] 刘昭君, 林华, 王义安, 等. 磷肥种类对李氏禾富集铜、铬的影响及其生理响应[J]. 生态环境学报, 2021, 30(2): 412-419. doi: 10.16258/j.cnki.1674-5906.2021.02.022
[28] DENG Y, WANG W, YU P, et al. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo[J]. NANOSCALE RESEARCH LETTERS, 2013: 8.
[29] 袁玉杰, 赵亚乾, 付晶淼, 等. CW-MFC中的电子流及对废水处理的强化作用[J]. 中国给水排水, 2021, 37(16): 27-34. doi: 10.19853/j.zgjsps.1000-4602.2021.16.005
[30] ZHAO Y, BU C, YANG H, et al. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China[J]. Chemosphere, 2020, 250: 126195. doi: 10.1016/j.chemosphere.2020.126195
[31] FANG Z, CAO X, LI X, et al. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J]. Bioresource Technology, 2017, 238: 450-460. doi: 10.1016/j.biortech.2017.04.075
[32] GUPTA S, NAYAK A, ROY C, et al. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production[J]. Chemosphere, 2021, 263: 128132. doi: 10.1016/j.chemosphere.2020.128132
[33] SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J]. Bioresource Technology, 2015, 195: 223-230. doi: 10.1016/j.biortech.2015.05.072
[34] OON Y L, ONG S, HO L, et al. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery[J]. Bioresource Technology, 2017, 224: 265-275. doi: 10.1016/j.biortech.2016.10.079
[35] 秦歌, 陈婧, 余仁栋, 等. 人工湿地-微生物燃料电池对高碳氮废水的强化净化和产电研究[J]. 湿地科学与管理, 2021, 17(4): 12-17. doi: 10.3969/j.issn.1673-3290.2021.04.03
[36] 覃辉, 林华, 徐虹, 等. 李氏禾对水体中Ni的富集特征及其光合生理响应[J]. 水处理技术, 2022, 48(7): 92-97. doi: 10.16796/j.cnki.1000-3770.2022.07.018
[37] ABID M, ALI S, QI L K, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L. )[J]. Scientific Reports, 2018, 8(1): 4615. doi: 10.1038/s41598-018-21441-7
[38] 周蛟, 韩盼盼, 潘远智, 等. Cd胁迫对两种龙葵光合生理及叶绿素荧光特性的影响[J]. 农业环境科学学报, 2021, 40(1): 26-34. doi: 10.11654/jaes.2020-0818