[1] |
荆德吉, 贾鑫, 张天, 等. 落煤过程中涡旋吹吸式除尘技术数值模拟及实验[J]. 中国安全科学学报, 2021, 31(6): 121-127.
|
[2] |
张鸽. 基于累积接尘量的尘肺病风险评估方法[J]. 中国安全科学学报, 2022, 32(2): 200-206.
|
[3] |
柳静献, 毛宁, 孙熙, 等. 我国除尘滤料历史、现状与发展趋势综述[J]. 中国环保产业, 2020(11): 6. doi: 10.3969/j.issn.1006-5377.2020.11.001
|
[4] |
JAWOREK A, SOBCZYKA A, KRUPA A, et al. Hybrid electrostatic filtration systems for fly ash particles emission control. a review[J]. Separation and Purification Technology, 2019, 213: 283-302. doi: 10.1016/j.seppur.2018.12.011
|
[5] |
吕超, 柳静献, 孙熙, 等. 燃煤飞灰单极荷电对纤维滤料过滤性能的强化[J]. 东北大学学报(自然科学版). 2021, 42(9): 1335-1340.
|
[6] |
CHANG Q, ZHENG C, YANG Z, et al. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification[J]. Fuel, 2017, 200: 134-145. doi: 10.1016/j.fuel.2017.03.033
|
[7] |
SOBCZYKA A, MARCHEWICZ A, KRUPA A, et al. Enhancement of collection efficiency for fly ash particles PM2.5 by unipolar agglomerator in two-stage electrostatic precipitator[J]. Separation and Purification Technology, 2017, 187(31): 91-101.
|
[8] |
KOIZUMI Y, KAWAMURA M, TOCHIKUBO F, et al. Estimation of the agglomeration coefficient of bipolar-charged aerosol particles[J]. Journal of Electrostatics, 2000, 48(2): 93-101. doi: 10.1016/S0304-3886(99)00053-4
|
[9] |
HUANG C, MA X, SUN Y, at al. Particle agglomeration in bipolar barb agglomerator under AC electric field[J]. Plasma Science and Technology, 2015, 17(4): 317-320. doi: 10.1088/1009-0630/17/4/10
|
[10] |
CIACH T, SOSNOWSKI T. removal of soot particles from diesel exhaust[J]. Journal of Aerosol Science, 1996, 27: S705-S706. doi: 10.1016/0021-8502(96)00425-9
|
[11] |
李雪娥, 向晓东, 李梦玲, 等. 双极电袋复合除尘器的增效减阻效应[J]. 环境工程学报, 2019, 13(1): 141-146. doi: 10.12030/j.cjee.201807009
|
[12] |
向晓东, 李雪娥, 贾思扬, 等. 单极与双极电袋复合除尘器增效作用对比实验[J]. 安全与环境学报, 2018, 18(6): 2328-2332.
|
[13] |
向晓东, 李梦玲, 贾思扬, 等. 粉尘双极荷电对滤料电荷累积抑制作用[J]. 环境工程学报, 2018, 12(8): 2282-2287. doi: 10.12030/j.cjee.201801209
|
[14] |
贾沛, 常玉锋. 双极预荷电装置凝并特性实验研究[J]. 科学技术与工程, 2021, 21(32): 13998-14005. doi: 10.3969/j.issn.1671-1815.2021.32.053
|
[15] |
黄超, 郝佩瑜, 贺晓杨, 等. 不同预荷电条件下影响颗粒物凝并效果的因素[J]. 安全与环境学报, 2021, 21(5): 2240-2245. doi: 10.13637/j.issn.1009-6094.2020.1085
|
[16] |
HINDS W C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles [M]. Canada: John Wiley & Sons, Inc., 1999.
|
[17] |
ZEBEL G. Zur theorie des verhaltens elektrisch geladener aerosole[J]. Kolloid-Zeitschrift, 1958, 157(1): 37-50. doi: 10.1007/BF01734032
|
[18] |
FUCHS N. The mechanics of aerosols [M]. Oxford: Pergamon Press, 1964.
|
[19] |
HE M, LUO Z, LU M, et al. Effects of acoustic and pulse corona discharge coupling field on agglomeration and removal of coal-fired fine particles[J]. Aerosol Air Quality Research, 2019, 19(11): 2585-2596. doi: 10.4209/aaqr.2018.08.0306
|
[20] |
CHANG Q, ZHENG C, GAO X, et al. Systematic approach to optimization of submicron particle agglomeration using ionic-wind-assisted pre-charger[J]. Aerosol Air Quality Research, 2015, 15(7): 2709-2719. doi: 10.4209/aaqr.2015.06.0418
|
[21] |
ZHU J, ZHANG X, CHEN W, et al. Electrostatic precipitation of fine particles with a bipolar pre-charger[J]. Journal of Electrostatics, 2010, 68(2): 174-178. doi: 10.1016/j.elstat.2009.12.005
|
[22] |
PAR K, YOON K, HWANG J. Removal of submicron particles using a carbon fiber ionizer-assisted medium air filter in a heating, ventilation, and air conditioning (HVAC) system[J]. Building and. Environment, 2011, 46(8): 1699-1708. doi: 10.1016/j.buildenv.2011.02.010
|
[23] |
JAWOREK A, MARCHEWICZ A, SOBCZYK A, et al. Two-stage electrostatic precipitator with co- and counter-flow particle Prechargers[J]. Journal of Electrostatics, 2017, 87: 180-194. doi: 10.1016/j.elstat.2017.04.012
|
[24] |
CAI R, LU H, ZHANG L. Mechanisms of performance degradation and efficiency improvement of electret filters during neutral particle loading[J]. Powder technology, 2021, 382: 133-143. doi: 10.1016/j.powtec.2020.12.061
|
[25] |
WU Z, WALTERS J, THOMAS D. The deposition of particles from an air flow on a single cylindrical fiber in a uniform electrical field[J]. Aerosol Science and Technology, 1999, 30(1): 62-70. doi: 10.1080/027868299304886
|
[26] |
BROWN R. Air filtration: An integrated approach to the theory and applications of fibrous filters [M]. Pergamon Press: Oxford, 1993.
|
[27] |
FENG Z, LONG Z, YU T. Filtration characteristics of fibrous filter following an electrostatic precipitator[J]. Journal of Electrostatics, 2016, 83: 52-62. doi: 10.1016/j.elstat.2016.07.009
|
[28] |
CAI R, LI S, ZHANG L, et al. Fabrication and performance of a stable micro/nano composite electret filter for effective PM2.5 capture[J]. Science of the Total Environment, 2020, 725: 138297. doi: 10.1016/j.scitotenv.2020.138297
|
[29] |
MEMELSTEIN J, KIM S, SIOUTAS C. Electrostatically enhanced stainless-steel filters: effect of filter structure and pore size on particle removal[J]. Aerosol Science and Technology, 2002, 36(1): 62-75. doi: 10.1080/027868202753339087
|
[30] |
WALSH D, STENHOUSE J. The effect of particle size, charge, and composition on the loading characteristics of an electrically active fibrous filter material[J]. Journal of Aerosol Science, 1997, 28(2): 307-321. doi: 10.1016/S0021-8502(96)00434-X
|
[31] |
LIU W, YOU M, ZHAN M, et al. Cake formation and filtration characteristics of a cyclone-granular bed filter[J]. Powder technology, 2020, 374: 152-159. doi: 10.1016/j.powtec.2020.06.081
|