[1] |
AL-NADDAF Q, LAWSON S, ROWNAGHI A A, et al. Analysis of dynamic CO2 capture over 13X zeolite monoliths in the presence of SOx, NOx and humidity[J]. AIChE Journal, 2020, 66(9): e16297.
|
[2] |
HE H, WANG Y, FU W, et al. Study on the CO-SCR anti-sulfur and denitration performance of V-doped OMS-2 catalysts[J]. Ceramics International, 2021, 47(23): 33120-33126. doi: 10.1016/j.ceramint.2021.08.213
|
[3] |
JIANG H, WANG Q, WANG H, et al. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process[J]. Catalysis Communications, 2016, 80: 24-27. doi: 10.1016/j.catcom.2016.03.013
|
[4] |
ADHIKARI A K, LIN K-S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon[J]. Chemical Engineering Journal, 2016, 284: 1348-1360. doi: 10.1016/j.cej.2015.09.086
|
[5] |
SUN H, REN D, KONG R, et al. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks[J]. Microporous and Mesoporous Materials, 2019, 284: 151-160. doi: 10.1016/j.micromeso.2019.04.031
|
[6] |
XU G, ZUO Y, HUANG B. Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry, 2018, 830-831: 43-49. doi: 10.1016/j.jelechem.2018.10.028
|
[7] |
CAMPBELL J, TOKAY B. Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates[J]. Microporous and Mesoporous Materials, 2017, 251: 190-199. doi: 10.1016/j.micromeso.2017.05.058
|
[8] |
李志华, 刘鸿, 宋凌勇, 等. 双金属功能化的MOF-74合成及气体吸附性能[J]. 无机化学学报, 2017, 33(2): 237-242. doi: 10.11862/CJIC.2017.042
|
[9] |
孔乾乾. Ni-MOF-74的制备、改性及其氢气吸附性能研究 [D]. 大连: 大连理工大学, 2020.
|
[10] |
孙豪. 金属有机骨架材料MOF-74的制备及其苯与CO2吸附性能研究 [D]. 桂林: 广西师范大学, 2020.
|
[11] |
林俭锋, 苏叶, 肖静, 等. Mg-MOF-74的氨改性及其吸附CO2和水蒸气性能[J]. 功能材料, 2014, 45(9): 9038-9042. doi: 10.3969/j.issn.1001-9731.2014.09.008
|
[12] |
GUO S, QI X, ZHOU H, et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate[J]. Journal of Materials Chemistry A, 2020, 8(23): 11712-11718. doi: 10.1039/D0TA00205D
|
[13] |
安晓银. NH2-MIL-125与M-MOF-74材料的制备、改性及吸附性能研究 [D]. 大连: 大连理工大学, 2019.
|
[14] |
李生璐. Mg-MOF-74的合成、改性及其CO2/H2O吸附性能研究 [D]. 沈阳: 东北大学, 2015.
|
[15] |
陈健. 金属—有机骨架MOF-74系列吸附捕集低浓度二氧化碳的研究 [D]. 大连: 大连理工大学, 2016.
|
[16] |
孙增智, 薛程, 宋莉芳, 等. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549. doi: 10.11896/cldb.201903022
|
[17] |
马孜豪, 竺柏康, 欧浩. 氮化硼纳米片改性Mg-MOF-74的制备及其水稳定性研究[J]. 浙江海洋大学学报(自然科学版), 2019, 38(4): 346-351.
|
[18] |
ZURRER T, WONG K, HORLYCK J, et al. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation[J]. Advanced Functional Materials, 2020, 31(9): 2007624.
|
[19] |
LI T, JIN Z. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science, 2022, 605: 385-397. doi: 10.1016/j.jcis.2021.07.098
|
[20] |
TAN K, ZULUAGA S, GONG Q, et al. Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74[J]. Chemistry of Materials, 2014, 26(23): 6886-6895. doi: 10.1021/cm5038183
|
[21] |
任丹妮. MOF-74的合成、改性及其吸附分离烯烃/烷烃性能研究 [D]. 上海: 华东理工大学, 2019.
|
[22] |
LUO L, GUO Y, ZHU T, et al. Adsorption species distribution and multicomponent adsorption mechanism of SO2, NO, and CO2 on commercial adsorbents[J]. Energy & Fuels, 2017, 31(10): 11026-11033.
|
[23] |
WU J, JIN S, WEI X, et al. Enhanced sulfur resistance of H3PW12O40-modified Fe2O3 catalyst for NH3-SCR: Synergistic effect of surface acidity and oxidation ability[J]. Chemical Engineering Journal, 2021, 412: 128712. doi: 10.1016/j.cej.2021.128712
|
[24] |
KANG R, HE J, BIN F, et al. Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts[J]. Fuel, 2021, 304: 121445. doi: 10.1016/j.fuel.2021.121445
|
[25] |
TAN K, ZULUAGA S, WANG H, et al. Interaction of acid gases SO2 and NO2 with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co)[J]. Chemistry of Materials, 2017, 29(10): 4227-4235. doi: 10.1021/acs.chemmater.7b00005
|
[26] |
LIU W, GAO Z, SUN M, et al. One-pot synthesis of CrαMnβCeTiOx mixed oxides as NH3-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance[J]. Chemical Engineering Science, 2022, 251: 117450. doi: 10.1016/j.ces.2022.117450
|
[27] |
ZHANG Y, ZHAO L, KANG M, et al. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chemical Engineering Journal, 2021, 426: 131873. doi: 10.1016/j.cej.2021.131873
|
[28] |
CHEN L, LI J, GE M. DRIFT Study on Cerium-Tungsten/Titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environmental Science& Technology, 2010, 44: 9590-9596.
|
[29] |
LIAN Z, LIU F, SHAN W, et al. Improvement of Nb doping on SO2 Resistance of VOx/CeO2 catalyst for the selective catalytic reduction of NOx with NH3[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7803-7809. doi: 10.1021/acs.jpcc.6b12772
|
[30] |
李正杰. 金属—有机骨架材料气相分离性能的分子模拟研究 [D]. 北京: 北京化工大学, 2016.
|
[31] |
杨家佳, 丁玉栋, 廖强, 等. 合成前氨基改性Mg-MOF-74吸附分离CO2性能研究[J]. 工程热物理学报, 2019, 40(2): 435-441.
|