[1] AGUSA T, TRANG P T K, LAN V M, et al. Human exposure to arsenic from drinking water in Vietnam [J]. Science of the Total Environment, 2014, 488/489: 562-569. doi: 10.1016/j.scitotenv.2013.10.039
[2] HE J, CHARLET L. A review of arsenic presence in China drinking water [J]. Journal of Hydrology, 2013, 492: 79-88. doi: 10.1016/j.jhydrol.2013.04.007
[3] DAS N, PAUL S, CHATTERJEE D, et al. Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India [J]. BMC Public Health, 2012, 12: 639. doi: 10.1186/1471-2458-12-639
[4] PAN W C, SEOW W J, KILE M L, et al. Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh [J]. American Journal of Epidemiology, 2013, 178(10): 1563-1570. doi: 10.1093/aje/kwt195
[5] LIU L, YANG Y P, DUAN G L, et al. The chemical-microbial release and transformation of arsenic induced by citric acid in paddy soil [J]. Journal of Hazardous Materials, 2022, 421: 126731. doi: 10.1016/j.jhazmat.2021.126731
[6] ZOU H M, ZHOU C, LI Y X, et al. Speciation analysis of arsenic in edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry [J]. Food Chemistry, 2020, 327: 127033. doi: 10.1016/j.foodchem.2020.127033
[7] TAYLOR V, GOODALE B, RAAB A, et al. Human exposure to organic arsenic species from seafood [J]. Science of the Total Environment, 2017, 580: 266-282. doi: 10.1016/j.scitotenv.2016.12.113
[8] LIU C W, LAI C C, CHEN Y, et al. Hydrogeochemical and mineralogical investigations of arsenic- and humic substance-enriched aquifers [J]. Journal of Hydrology, 2013, 498: 59-75. doi: 10.1016/j.jhydrol.2013.06.017
[9] MIADENOV N, ZHENG Y, SIMONE B, et al. Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility [J]. Environmental Science & Technology, 2015, 49(18): 10815-10824.
[10] WANG S L, MULLIGAN C N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater [J]. Environmental Geochemistry and Health, 2006, 28(3): 197-214. doi: 10.1007/s10653-005-9032-y
[11] JIN J, ZIMMERMAN A R, NORTON S B, et al. Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations [J]. Science of the Total Environment, 2016, 551/552: 238-245. doi: 10.1016/j.scitotenv.2016.02.028
[12] KONG Y L, KANG J, SHEN J M, et al. Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: Effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes [J]. Environmental Science and Pollution Research, 2017, 24(3): 2381-2393. doi: 10.1007/s11356-016-7994-1
[13] WARWICK P, INAM E, EVANS N. Arsenic's interaction with humic acid [J]. Environmental Chemistry, 2005, 2(2): 119. doi: 10.1071/EN05025
[14] RASHID M, STERBINSKY G E, PINILLA M Á G, et al. Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles [J]. The Journal of Physical Chemistry C, 2018, 122(25): 13540-13547. doi: 10.1021/acs.jpcc.7b12438
[15] WEI Y T, ZHENG Y M, CHEN J P. Uptake of methylated arsenic by a polymeric adsorbent: Process performance and adsorption chemistry [J]. Water Research, 2011, 45(6): 2290-2296. doi: 10.1016/j.watres.2011.01.002
[16] JAIN N, MAITI A. Arsenic adsorbent derived from the ferromanganese slag [J]. Environmental Science and Pollution Research, 2021, 28(3): 3230-3242. doi: 10.1007/s11356-020-10745-9
[17] 柳凤娟, 张国平, 罗绪强, 等. Fe(Ⅱ)浓度对硫酸盐还原菌去除水体中砷和锑的影响 [J]. 环境化学, 2021, 40(10): 3171-3179. doi: 10.7524/j.issn.0254-6108.2020060401 LIU F J, ZHANG G P, LUO X Q, et al. Effect of different contents of Fe(Ⅱ) on removal of arsenic and antimony from water by sulfate reducing bacteria [J]. Environmental Chemistry, 2021, 40(10): 3171-3179(in Chinese). doi: 10.7524/j.issn.0254-6108.2020060401
[18] 杨厅, 王强, 李二平, 等. 铁盐类复合稳定剂对砷钙渣中As的稳定化作用及机理 [J]. 环境化学, 2020, 39(11): 2999-3008. doi: 10.7524/j.issn.0254-6108.2020042202 YANG T, WANG Q, LI E P, et al. Stabilization treatment of arsenic calcium residue using Fe-containing compound stabilizers [J]. Environmental Chemistry, 2020, 39(11): 2999-3008(in Chinese). doi: 10.7524/j.issn.0254-6108.2020042202
[19] LIU G L, FERNANDEZ A, CAI Y. Complexation of arsenite with humic acid in the presence of ferric iron [J]. Environmental Science & Technology, 2011, 45(8): 3210-3216.
[20] 王晓丹, 梁康, 杨佘维. 高度分散的球状纳米磁铁矿的水热合成及其结构表征[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛论文集(二). 西安, 2019: 46-48.
[21] 韩建军, 廖党, 席壮民, 等. 磁铁矿防辐射超高性能混凝土制备及性能研究 [J]. 硅酸盐通报, 2021, 40(9): 2930-2938. doi: 10.16552/j.cnki.issn1001-1625.20210629.001 HAN J J, LIAO D, XI Z M, et al. Preparation and properties of ultra-high performance concrete for radiation protection of magnetite [J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2930-2938(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.20210629.001
[22] AYAZ I, RIZWAN M, ULLMAN J L, et al. Lignocellulosic based biochar adsorbents for the removal of fluoride and arsenic from aqueous solution: Isotherm and kinetic modeling [J]. Polymers, 2022, 14(4): 715. doi: 10.3390/polym14040715
[23] MIKUTTA R, LORENZ D, GUGGENBERGER G, et al. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption [J]. Geochimica et Cosmochimica Acta, 2014, 144: 258-276. doi: 10.1016/j.gca.2014.08.026
[24] 王喆, 赵志西. 砷迁移释放过程中吸附-脱附作用机制的研究进展[J]. 化学通报, 2020, 83(1): 23-29. WANG Z, ZHAO Z X. Research advances of the adsorption-desorption mechanism in arsenic mobilization and retention[J]. Chemistry, 2020, 83(1): 23-29(in Chinese). Chemistry, 2020, 83(1): 23-29(in Chinese).
[25] ZSOLNAY Á. Dissolved organic matter: Artefacts, definitions, and functions [J]. Geoderma, 2003, 113(3/4): 187-209.
[26] 吴少雄, 邢志, 陈红兵, 等. 磁性纳米四氧化三铁选择性富集-电感耦合等离子体原子发射光谱测定砷 [J]. 分析化学, 2009, 37(5): 711-714. doi: 10.3321/j.issn:0253-3820.2009.05.017 WU S X, XING Z, CHEN H B, et al. Nanomagnetic material ferriferrous oxide separation/enrichment and inductively coupled plasma-atomic emission spectrometry for determination of arsenic [J]. Chinese Journal of Analytical Chemistry, 2009, 37(5): 711-714(in Chinese). doi: 10.3321/j.issn:0253-3820.2009.05.017
[27] SARMAH S, SAIKIA J, PHUKAN A, et al. Adsorption of As(V) from water over a hydroxyl-alumina modified paddy husk ash surface and its sludge immobilization [J]. Water, Air, & Soil Pollution, 2019, 230(2): 32.
[28] REDMAN A D, MACALADY D L, AHMANN D. Natural organic matter affects arsenic speciation and sorption onto hematite [J]. Environmental Science & Technology, 2002, 36(13): 2889-2896.
[29] BUSCHMANN J, KAPPELER A, LINDAUER U, et al. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum [J]. Environmental Science & Technology, 2006, 40(19): 6015-6020.
[30] LIN H T, WANG M C, LI G C. Complexation of arsenate with humic substance in water extract of compost [J]. Chemosphere, 2004, 56(11): 1105-1112. doi: 10.1016/j.chemosphere.2004.05.018
[31] 罗梦, 何绪文, 林宏宇, 等. 混凝—气浮工艺预处理ABS树脂生产废水 [J]. 化工环保, 2017, 37(1): 55-61. doi: 10.3969/j.issn.1006-1878.2017.01.010 LUO M, HE X W, LIN H Y, et al. Pretreatment of ABS resin production wastewater by coagulation-air flotation process [J]. Environmental Protection of Chemical Industry, 2017, 37(1): 55-61(in Chinese). doi: 10.3969/j.issn.1006-1878.2017.01.010
[32] ZHANG X, DENG J S, HUANGFU M Z, et al. Novel insights into the influence of ferric ion as a surface modifier to enhance the floatability of specularite [J]. Powder Technology, 2022, 398: 117141. doi: 10.1016/j.powtec.2022.117141
[33] 王喆, 赵志西, 刘杨秋凡, 等. 砷在新疆奎屯河沉积物上的吸附及有机酸对吸附的影响 [J]. 生态学杂志, 2021, 40(6): 1766-1774. doi: 10.13292/j.1000-4890.202106.008 WANG Z, ZHAO Z X, LIU Y, et al. Adsorption of arsenic on the sediments of Kuitun River in Xinjiang and the effects of organic acids on adsorption [J]. Chinese Journal of Ecology, 2021, 40(6): 1766-1774(in Chinese). doi: 10.13292/j.1000-4890.202106.008
[34] ZUBAIR Y O, FUCHIDA S, TOKORO C. Insight into the mechanism of arsenic(III/V) uptake on mesoporous zerovalent iron-magnetite nanocomposites: Adsorption and microscopic studies [J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49755-49767.
[35] 温全宝, 滕青, 杨志超, 等. 苛化淀粉对磁铁矿和金云母浮选分离的影响及机理研究 [J]. 矿产保护与利用, 2020, 40(2): 62-69. doi: 10.13779/j.cnki.issn1001-0076.2020.02.009 WEN Q B, TENG Q, YANG Z C, et al. Effect and mechanism of causticized starch on flotation separation of magnetite and phlogopite [J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 62-69(in Chinese). doi: 10.13779/j.cnki.issn1001-0076.2020.02.009
[36] 张帆. 改性材料在石油污染水体中的应用 [J]. 北方环境, 2013, 25(12): 142-148. ZHANG F. Application of inodifiled material in oilpoclution in water bodies [J]. Northern Environment, 2013, 25(12): 142-148(in Chinese).
[37] ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption [J]. Environmental Science & Technology, 2007, 41(13): 4613-4619.
[38] ZHENG X, KHAN M T, CROUÉ J P. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions [J]. Water Research, 2014, 65: 414-424. doi: 10.1016/j.watres.2014.07.039
[39] RAO P H, MAK M S H, LIU T Z, et al. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses [J]. Chemosphere, 2009, 75(2): 156-162. doi: 10.1016/j.chemosphere.2008.12.019
[40] XIE L, SHANG C. Role of humic acid and ouinone model compounds in bromate reduction by zerovalent iron [J]. Environmental Science & Technology, 2005, 39(4): 1092-1100.
[41] SHARMA P, OFNER J, KAPPLER A. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As [J]. Environmental Science & Technology, 2010, 44(12): 4479-4485.
[42] WANG Y, ZHANG D, SHEN Z Y, et al. Investigation of the interaction between As and Sb species and dissolved organic matter in the Yangtze Estuary, China, using excitation-emission matrices with parallel factor analysis [J]. Environmental Science and Pollution Research, 2015, 22(3): 1819-1830. doi: 10.1007/s11356-014-3380-z
[43] WANG S, ZHENG K, LI H P, et al. Arsenopyrite weathering in acidic water: Humic acid affection and arsenic transformation [J]. Water Research, 2021, 194: 116917. doi: 10.1016/j.watres.2021.116917
[44] HU C Z, CHEN Q X, LIU H J, et al. Coagulation of methylated arsenic from drinking water: Influence of methyl substitution [J]. Journal of Hazardous Materials, 2015, 293: 97-104. doi: 10.1016/j.jhazmat.2015.03.055
[45] SHIMIZU M, GINDER-VOGEL M, PARIKH S J, et al. Molecular scale assessment of methylarsenic sorption on aluminum oxide [J]. Environmental Science & Technology, 2010, 44(2): 612-617.
[46] SHIMIZU M, ARAI Y, SPARKS D L. Multiscale assessment of methylarsenic reactivity in soil. 2. Distribution and speciation in soil [J]. Environmental Science & Technology, 2011, 45(10): 4300-4306.
[47] SUN Y, LAN J R, CHEN X H, et al. High arsenic levels in sediments, Jianghan Plain, central China: Vertical distribution and characteristics of arsenic species, dissolved organic matter, and microbial community [J]. Journal of Geochemical Exploration, 2021, 228: 106822. doi: 10.1016/j.gexplo.2021.106822
[48] HUANG S B, WANG Y X, CAO L, et al. Multidimensional spectrofluorometry characterization of dissolved organic matter in arsenic-contaminated shallow groundwater [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2012, 47(10): 1446-1454.
[49] CHEN C, LI L Y, HUANG K, et al. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils [J]. The ISME Journal, 2019, 13(10): 2523-2535. doi: 10.1038/s41396-019-0451-7
[50] LÜ W, YAO X, REN H Y, et al. Characterizing the interactions between sediment dissolved organic matter and zinc using multispectroscopic techniques [J]. Environmental Pollution, 2020, 261: 113644. doi: 10.1016/j.envpol.2019.113644
[51] 朱江鹏, 梅婷, 彭云, 等. 荧光猝灭法研究洛克沙胂与腐殖酸的相互作用 [J]. 环境科学, 2014, 35(7): 2620-2626. doi: 10.13227/j.hjkx.2014.07.026 ZHU J P, MEI T, PENG Y, et al. Characterizing the interaction between roxarsone and humic acid by fluorescence quenching experiment [J]. Environmental Science, 2014, 35(7): 2620-2626(in Chinese). doi: 10.13227/j.hjkx.2014.07.026
[52] PALMER N E, von WANDRUSZKA R. Humic acids as reducing agents: The involvement of quinoid moieties in arsenate reduction [J]. Environmental Science and Pollution Research, 2010, 17(7): 1362-1370. doi: 10.1007/s11356-010-0322-2
[53] KONG Y L, SHEN J M, CHEN Z L, et al. Influence of potassium permanganate pre-oxidation on the interaction of humic acid with cadmium/arsenic [J]. RSC Advances, 2016, 6(4): 3048-3057. doi: 10.1039/C5RA22043B
[54] 董丽娴. 溶解性有机质对砷形态及藻类有效性的影响[D]. 上海: 同济大学, 2008. DONG L X. Influence of dissolved organic matter on the arsenic speciation and availability to algae[D]. Shanghai: Tongji University, 2008(in Chinese).
[55] KIM E J, HWANG B R, BAEK K. Effects of natural organic matter on the coprecipitation of arsenic with iron [J]. Environmental Geochemistry and Health, 2015, 37(6): 1029-1039. doi: 10.1007/s10653-015-9692-1
[56] 葛思怡. 金属离子对溶解性有机质与砷类化合物之间相互作用的影响研究[D]. 南京: 南京师范大学, 2017. GE S Y. Effect of metal ions on the interaction between dissolved organic matter and arsenic compounds[D]. Nanjing: Nanjing Normal University, 2017(in Chinese).