[1] 郝二成, 左利峰. 浅谈水处理中混凝工艺发展[J]. 山东煤炭科技, 2008, 4: 97-98. doi: 10.3969/j.issn.1005-2801.2008.05.062
[2] 王趁义, 张彩华, 毕树平, 等. Al-Ferron逐时络合比色光度法测定聚合铝溶液中Ala, Alb和Alc三种铝形态的时间界限研究[J]. 光谱学与光谱分析, 2005, 25(2): 252-256. doi: 10.3321/j.issn:1000-0593.2005.02.026
[3] 赵华章, 杨宏伟, 蒋展鹏, 等. 混凝沉淀过程中铝系混凝剂的形态转化规律[J]. 中国环境科学, 2005, 25(2): 183-187. doi: 10.3321/j.issn:1000-6923.2005.02.013
[4] WANG W Y, YUE Q Y, GAO B Y, et al. Floc proprieties and ultrafiltration characteristics by chitosan compound aluminum species coagulant under different pH conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 224-231. doi: 10.1016/j.jtice.2016.08.041
[5] 王东升, 汤鸿霄, GREGORY J. IPF-PACl混凝动力学研究形态组成的重要性[J]. 环境科学学报, 2001, 21: 17-22.
[6] BERTHON G. Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity[J]. Coordination Chemistry Reviews, 2002, 228: 319-341. doi: 10.1016/S0010-8545(02)00021-8
[7] 赵鑫荣, 刘佳琪, 洪帆, 等. 铝神经毒性对学习记忆功能的影响[J]. 解剖学杂志, 2018, 41(5): 590-592. doi: 10.3969/j.issn.1001-1633.2018.05.020
[8] 庞洁. 铝对人体的毒性及相关食品安全问题研究进展[J]. 内科, 2011, 6(5): 470-473. doi: 10.3969/j.issn.1673-7768.2011.05.038
[9] 杨忠莲, 高宝玉. 水体中残余铝的含量、组分、危害及控制研究进展[J]. 精细化工, 2013, 30(4): 412-419. doi: 10.13550/j.jxhg.2013.04.021
[10] 李勐卓, 程继夏, 顾军农, 等. 铁-铝盐混凝剂混合投加工艺控制溶解性残余铝的机理[J]. 环境工程学报, 2021, 15(2): 580-587. doi: 10.12030/j.cjee.202005084
[11] YAN M Q, HAN X Z, ZHANG C Y. Investigating the features in differential absorbance spectra of NOM associated with metal ion binding: A comparison of experimental data and TD-DFT calculations for model compounds[J]. Water Research, 2017, 124: 496-503. doi: 10.1016/j.watres.2017.08.004
[12] 杨晓莉, 赵建明, 于永军, 等. 铝元素在农村饮用水中的含量及风险分析[J]. 源研究与管理, 2019, 01: 52-54.
[13] WU J H, XIA M J, LI Z W, et al. Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size[J]. Journal of Membrane Science, 2021, 638: 119699. doi: 10.1016/j.memsci.2021.119699
[14] 童庆, 徐慧, 樊华, 等. Al13改性羟基磷灰石的除氟性能研究[J]. 环境科学学报, 2021, 41(7): 2748-2757.
[15] CAO B D, ZHANG W J, WANG Q D, et al. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation[J]. Water Research, 2016, 105: 615-624. doi: 10.1016/j.watres.2016.09.016
[16] 王志红, 崔福义, 郑学书, 等. 混凝沉淀中影响除铝效率的因素[J]. 中国给水排水, 2001, 17(10): 5-8. doi: 10.3321/j.issn:1000-4602.2001.10.002
[17] 徐伟颖. 纳米Al13的混凝行为、絮体特性及对膜污染的影响研究[D]. 济南: 山东大学, 2012.
[18] JARVIS P, JEFFERSON B, PARSONS S A. Breakage, regrowth, and fractal nature of natural organic matter flocs[J]. Environmental Science & Technology, 2005, 39: 2307-2314.
[19] 任鹏飞. 基于颗粒形态变化的变速沉淀过程稳定性控制机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[20] TANG P, GREENWOOD J, RAPER J A. A model to describe the settling behavior of fractal aggregates[J]. Journal of Colloid and Interface Science, 2002, 247(1): 210-219. doi: 10.1006/jcis.2001.8028