[1] ŁAMACZ A, KRZTOŃ A, DJÉGA-MARIADASSOU G. Study on the selective catalytic reduction of NO with toluene over CuO/CeZrO2. A confirmation for the three-function model of HC-SCR using the temperature programmed methods and in situ DRIFTS [J]. Applied Catalysis B:Environmental, 2013, 142-143: 268-277. doi: 10.1016/j.apcatb.2013.05.030
[2] SU Y X, WEN N N, CHENG J H, et al. Experimental study on SCR-C3H6 over Cu–Fe/Al-PILC catalysts: Catalytic performance, characterization, and mechanism [J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14776-14788.
[3] DING W C, LI W X. First-principles study of NO reduction by CO on transition metal atoms-doped CeO2(111) [J]. Chinese Journal of Catalysis, 2014, 35(12): 1937-1943. doi: 10.1016/S1872-2067(14)60169-8
[4] POLYCHRONOPOULOU K, ALKHOORI A A, EFSTATHIOU A M, et al. Design aspects of doped CeO2 for low-temperature catalytic CO oxidation: Transient kinetics and DFT approach [J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22391-22415.
[5] ZHAO S Z, KANG D J, LIU Y P, et al. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO2 nanorods with improved activity for carbonyl sulfide hydrolysis [J]. ACS Catalysis, 2020, 10(20): 11739-11750. doi: 10.1021/acscatal.0c02832
[6] LEE J H, JO D Y, CHOUNG J W, et al. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: Active oxygen species and DFT calculations [J]. Journal of Hazardous Materials, 2021, 403: 124085. doi: 10.1016/j.jhazmat.2020.124085
[7] KIM J R, LEE K Y, SUH M J, et al. Ceria–zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support [J]. Catalysis Today, 2012, 185(1): 25-34. doi: 10.1016/j.cattod.2011.08.018
[8] CUIF J P, BLANCHARD G, TOURET O, et al. (Ce, Zr)O2 solid solutions for three-way catalysts[C]. SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997.
[9] LIU C X, ZHOU J Y, MA H F, et al. Antisintering and high-activity Ni catalyst supported on mesoporous silica incorporated by Ce/Zr for CO methanation [J]. Industrial & Engineering Chemistry Research, 2018, 57(43): 14406-14416.
[10] LIU Y, ZHAI Y Q, LI Y D. Preparation of Ce-Zr-O solid solution [J]. Reaction Kinetics and Catalysis Letters, 2004, 82(2): 295-302. doi: 10.1023/B:REAC.0000034840.35124.1a
[11] YUAN Q, LIU Q, SONG W G, et al. Ordered Mesoporous Ce1-xZrxO2 solid solutions with crystalline walls [J]. Journal of the American Chemical Society, 2007, 129(21): 6698-6699. doi: 10.1021/ja070908q
[12] YU Q, WU X X, YAO X J, et al. Mesoporous ceria-zirconia-alumina nanocomposite-supported copper as a superior catalyst for simultaneous catalytic elimination of NO-CO [J]. Catalysis Communications, 2011, 12(14): 1311-1317. doi: 10.1016/j.catcom.2011.05.002
[13] dos SANTOS XAVIER L P, RICO-PÉREZ V, HERNÁNDEZ-GIMÉNEZ A M, et al. Simultaneous catalytic oxidation of carbon monoxide, hydrocarbons and soot with Ce-Zr-Nd mixed oxides in simulated diesel exhaust conditions [J]. Applied Catalysis B:Environmental, 2015, 162: 412-419. doi: 10.1016/j.apcatb.2014.07.013
[14] FRIZON V, BASSAT J M, POLLET M, et al. Tuning the Pr valence state to design high oxygen mobility, redox and transport properties in the CeO2–ZrO2–PrOx phase diagram [J]. The Journal of Physical Chemistry C, 2019, 123(11): 6351-6362. doi: 10.1021/acs.jpcc.8b11469
[15] CHENG Y, SONG W Y, LIU J, et al. Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr oxide [J]. ACS Catalysis, 2017, 7(6): 3883-3892. doi: 10.1021/acscatal.6b03387
[16] FORNASIERO P, KASPAR J, SERGO V, et al. Redox behavior of high-surface-area Rh-, Pt-, and Pd-loaded Ce0.5Zr0.5O2 mixed oxide [J]. Journal of Catalysis, 1999, 182(1): 56-69. doi: 10.1006/jcat.1998.2321
[17] WU J, O’NEILL A E, LI C H, et al. Superior TWC activity of Rh supported on pyrochlore-phase ceria zirconia [J]. Applied Catalysis B:Environmental, 2021, 280: 119450. doi: 10.1016/j.apcatb.2020.119450
[18] CUI B, YAN S, XIA Y K, et al. CuxCe1-xO2 nanoflakes with improved catalytic activity and thermal stability for diesel soot combustion [J]. Applied Catalysis A:General, 2019, 578: 20-29. doi: 10.1016/j.apcata.2019.03.025
[19] ZHANG L, SPEZZATI G, MURAVEV V, et al. Improved Pd/CeO2 catalysts for low-temperature NO reduction: Activation of CeO2 lattice oxygen by Fe doping [J]. ACS Catalysis, 2021, 11(9): 5614-5627. doi: 10.1021/acscatal.1c00564
[20] DENG Y Q, SHI X B, WEI L Q, et al. Effect of intergrowth and coexistence CuO-CeO2 catalyst by grinding method application in the catalytic reduction of NOx by CO [J]. Journal of Alloys and Compounds, 2021, 869: 159231. doi: 10.1016/j.jallcom.2021.159231
[21] CAO Y, LIU L J, GAO F, et al. Understanding the effect of CuO dispersion state on the activity of CuO modified Ce0.7Zr0.3O2 for NO removal [J]. Applied Surface Science, 2017, 403: 347-355. doi: 10.1016/j.apsusc.2017.01.212
[22] JEON J, HAM H, XING F L, et al. PdIn-based pseudo-binary alloy as a catalyst for NOx removal under lean conditions [J]. ACS Catalysis, 2020, 10(19): 11380-11384. doi: 10.1021/acscatal.0c03427
[23] LI Z L, CHENG H, ZHANG X B, et al. CuW/CeZr catalysts: A dual-function catalyst for selective catalytic reduction of NO and CO oxidation under oxygen-rich conditions [J]. Catalysis Letters, 2021, 151(11): 3361-3371. doi: 10.1007/s10562-021-03562-3
[24] LIU Z S, YU F, PAN K K, et al. Two-dimensional vermiculite carried CuCoCe catalysts for CO-SCR in the presence of O2 and H2O: Experimental and DFT calculation [J]. Chemical Engineering Journal, 2021, 422: 130099. doi: 10.1016/j.cej.2021.130099
[25] LAN L, CHEN S H, ZHAO M, et al. The effect of synthesis method on the properties and catalytic performance of Pd/Ce0.5Zr0.5O2-Al2O3 three-way catalyst [J]. Journal of Molecular Catalysis A:Chemical, 2014, 394: 10-21. doi: 10.1016/j.molcata.2014.06.032
[26] LIU Y N, YANG J, YANG J, et al. Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd [J]. Applied Surface Science, 2021, 556: 149766. doi: 10.1016/j.apsusc.2021.149766
[27] KIBIS L S, SVINTSITSKIY D A, DEREVYANNIKOVA E A, et al. From highly dispersed Rh3+ to nanoclusters and nanoparticles: Probing the low-temperature NO+CO activity of Rh-doped CeO2 catalysts [J]. Applied Surface Science, 2019, 493: 1055-1066. doi: 10.1016/j.apsusc.2019.07.043
[28] ZHENG T T, LU B, HARLE G, et al. A comparative study of Rh-only, Pd-only and Pd/Rh catalysts [J]. Applied Catalysis A:General, 2020, 602: 117649. doi: 10.1016/j.apcata.2020.117649
[29] WANG T, CHEN K, ZHOU R X. Pt–Pd bimetallic effect in PtxPd1–x/(Ce, Zr, La)O2 catalysts for NOx, HC and CO elimination [J]. Catalysis Science & Technology, 2021, 11(8): 2782-2791.
[30] JEONG H, KWON O, KIM B S, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts [J]. Nature Catalysis, 2020, 3(4): 368-375. doi: 10.1038/s41929-020-0427-z
[31] MEUNIER F C, CARDENAS L, KAPER H, et al. Synergy between metallic and oxidized Pt sites unravelled during room temperature CO oxidation on Pt/ceria [J]. Angewandte Chemie (International Ed. in English), 2021, 60(7): 3799-3805. doi: 10.1002/anie.202013223
[32] TAN W, XIE S H, CAI Y D, et al. Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control [J]. Environmental Science & Technology, 2021, 55(18): 12607-12618.
[33] TAN W, ALSENANI H, XIE S H, et al. Tuning single-atom Pt1–CeO2 catalyst for efficient CO and C3H6 oxidation: Size effect of ceria on Pt structural evolution [J]. ChemNanoMat, 2020, 6(12): 1797-1805. doi: 10.1002/cnma.202000431
[34] NIE L, MEI D, XIONG H, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation [J]. Science, 2017, 358(6369): 1419-1423. doi: 10.1126/science.aao2109
[35] JIANG D, YAO Y, LI T, et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation [J]. Angewandte Chemie (International Ed. in English), 2021, 60(50): 26054-26062. doi: 10.1002/anie.202108585
[36] JEONG H, SHIN D, KIM B-S, et al. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity [J]. Angewandte Chemie (International Ed. in English), 2020, 59(46): 20691-20696. doi: 10.1002/anie.202009776
[37] WANG T, GUO X L, LIN S Y, et al. Effect of PdOx structure properties on catalytic performance of Pd/Ce0.67Zr0.33O2 catalyst for CO, HC and NOx elimination [J]. Journal of Rare Earths, 2019, 37(7): 706-713. doi: 10.1016/j.jre.2018.10.017
[38] MAILLET T, SOLLEAU C, BARBIER J Jr, et al. Oxidation of carbon monoxide, propene, propane and methane over a Pd/Al2O3 catalyst. Effect of the chemical state of Pd [J]. Applied Catalysis B:Environmental, 1997, 14(1): 85-95.
[39] QI L, YU Q, DAI Y, et al. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation [J]. Applied Catalysis B:Environmental, 2012, 119-120: 308-320. doi: 10.1016/j.apcatb.2012.02.029
[40] LEFORT I, HERREROS J M, TSOLAKIS A. Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst [J]. Environmental Science & Technology, 2014, 48(4): 2361-2367.
[41] SHANG D H, ZHONG Q, CAI W. High performance of NO oxidation over Ce-Co-Ti catalyst: The interaction between Ce and Co [J]. Applied Surface Science, 2015, 325: 211-216. doi: 10.1016/j.apsusc.2014.11.056
[42] LI H, TANG X L, YI H H, et al. Low-temperature catalytic oxidation of NO over Mn-Ce-Ox catalyst [J]. Journal of Rare Earths, 2010, 28(1): 64-68. doi: 10.1016/S1002-0721(09)60052-1
[43] 夏斌, 童志权, 黄妍, 等. CuSO4-CeO2/TS催化氧化NO及其抗H2O和SO2毒化性能 [J]. 过程工程学报, 2010, 10(1): 142-148. XIA B, TONG Z Q, HUANG Y, et al. Catalytic oxidation of NO over CuSO4-CeO2/TiO2 catalyst and its property against the effcts of H2O and SO2 [J]. The Chinese Journal of Process Engineering, 2010, 10(1): 142-148(in Chinese).
[44] WANG Z, SUN X Y, LIU J, et al. The NO oxidation performance over Cu/Ce0.8Zr0.2O2 catalyst [J]. Surfaces and Interfaces, 2017, 6: 103-109. doi: 10.1016/j.surfin.2016.12.003
[45] 彭超, 于迪, 王斓懿, 等. 铈基氧化物催化燃烧柴油机炭烟颗粒的性能及机理研究进展 [J]. 中国科学:化学, 2021, 51(8): 1029-1059. doi: 10.1360/SSC-2021-0093 PENG C, YU D, WANG L Y, et al. Recent advances in performances and mechanisms of cerium-based oxide catalysts for catalytic combustion of soot particles released from diesel engines [J]. Scientia Sinica Chimica, 2021, 51(8): 1029-1059(in Chinese). doi: 10.1360/SSC-2021-0093
[46] BUENO-LÓPEZ A. Diesel soot combustion ceria catalysts [J]. Applied Catalysis B:Environmental, 2014, 146: 1-11. doi: 10.1016/j.apcatb.2013.02.033
[47] DAI Y Q, TIAN J L, FU W L. Shape manipulation of porous CeO2 nanofibers: Facile fabrication, growth mechanism and catalytic elimination of soot particulates [J]. Journal of Materials Science, 2019, 54(14): 10141-10152. doi: 10.1007/s10853-019-03648-9
[48] WEI Y C, JIAO J Q, ZHANG X D, et al. Catalysts of self-assembled Pt@CeO2δ rich core–shell nanoparticles on 3D ordered macroporous Ce1–xZrxO2 for soot oxidation: Nanostructure-dependent catalytic activity [J]. Nanoscale, 2017, 9(13): 4558-4571. doi: 10.1039/C7NR00326A
[49] FOO G S, HOOD Z D, WU Z L. Shape effect undermined by surface reconstruction: Ethanol dehydrogenation over shape-controlled SrTiO3 nanocrystals [J]. ACS Catalysis, 2018, 8(1): 555-565. doi: 10.1021/acscatal.7b03341
[50] JIAN S Q, YANG Y X, REN W, et al. Kinetic analysis of morphologies and crystal Planes of nanostructured CeO2 catalysts on soot oxidation [J]. Chemical Engineering Science, 2020, 226: 115891. doi: 10.1016/j.ces.2020.115891
[51] HARADA K, OISHI T, HAMAMOTO S, et al. Lattice oxygen activity in Pr- and La-doped CeO2 for low-temperature soot oxidation [J]. The Journal of Physical Chemistry C, 2014, 118(1): 559-568. doi: 10.1021/jp410996k
[52] RANGASWAMY A, SUDARSANAM P, REDDY B M. Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures [J]. Journal of Rare Earths, 2015, 33(11): 1162-1169. doi: 10.1016/S1002-0721(14)60541-X
[53] ATRIBAK I, BUENO-LÓPEZ A, GARCÍA-GARCÍA A. Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria-zirconia catalysts [J]. Journal of Molecular Catalysis A:Chemical, 2009, 300(1): 103-110.
[54] VINODKUMAR T, KUMAR J K P, REDDY B M. Supported nano-sized Ce0. 8Eu0.2O2-δ solid solution catalysts for diesel soot and benzylamine oxidations [J]. Journal of Chemical Sciences, 2021, 133(3): 1-10.
[55] MAŁECKA M A, KRASZKIEWICZ P, BEZKROVNYI O. Catalysis by shapely nanocrystals of the Ce1−xYbxO2−x/2 mixed oxides—Synthesis and phase stability [J]. Materials Characterization, 2019, 155: 109796. doi: 10.1016/j.matchar.2019.109796
[56] GRABCHENKO M V, MAMONTOV G V, ZAIKOVSKII V I, et al. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation [J]. Applied Catalysis B:Environmental, 2020, 260: 118148. doi: 10.1016/j.apcatb.2019.118148
[57] SHUKLA P C. Non-Noble Metal-Based Catalysts for the Application of Soot Oxidation Advanced Engine Diagnostics[M], 2019.
[58] SHAN W, YANG L, MA N, et al. Catalytic activity and stability of K/CeO2 catalysts for diesel soot oxidation [J]. Chinese Journal of Catalysis. 2012, 33(4), 970-976.
[59] LIANG H, WU S T, HONG Y X, et al. Influence of alkali metals with different ionic radius doping into Ce0. 7Zr0. 3O2 on the active oxygen [J]. Catalysis Letters, 2014, 144(4): 685-690. doi: 10.1007/s10562-014-1195-7
[60] ZHANG G Z, ZHAO Z, LIU J, et al. Three dimensionally ordered macroporous Ce1-xZrxO2 solid solutions for diesel soot combustion [J]. Chemical Communications, 2010, 46(3): 457-459. doi: 10.1039/B915027G
[61] IL’ICHEV A N, SHIBANOVA M D, UKHARSKII A A, et al. Mechanism of the formation of O2- radical anions on CeO2 and (0.5–10)% CeO2/ZrO2 during the adsorption of an NO-O2 mixture [J]. Kinetics and Catalysis, 2005, 46(3): 387-395. doi: 10.1007/s10975-005-0090-z
[62] ZHANG G L, CHENG X, YANG D, et al. Loofa sponage derived multi-tubular CuO/CeO2-ZrO2 with hierarchical porous structure for effective soot catalytic oxidation [J]. Fuel, 2019, 258: 116202. doi: 10.1016/j.fuel.2019.116202
[63] WANG X, JIN B F, FENG R X, et al. A robust core-shell silver soot oxidation catalyst driven by Co3O4: Effect of tandem oxygen delivery and Co3O4-CeO2 synergy [J]. Applied Catalysis B:Environmental, 2019, 250: 132-142. doi: 10.1016/j.apcatb.2019.03.019
[64] CUI B, ZHOU L J, LI K, et al. Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion [J]. Applied Catalysis B:Environmental, 2020, 267: 118670. doi: 10.1016/j.apcatb.2020.118670
[65] LI H C, LI K Z, WANG H, et al. Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides [J]. Applied Surface Science, 2016, 390: 513-525. doi: 10.1016/j.apsusc.2016.08.122
[66] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects [J]. Chemical Reviews, 2019, 119(19): 10916-10976. doi: 10.1021/acs.chemrev.9b00202
[67] SHAN Y L, DU J P, ZHANG Y, et al. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of Cu-based small-pore zeolites [J]. National Science Review, 2021, 8(10): nwab010. doi: 10.1093/nsr/nwab010
[68] LIU Q, BIAN C, MING S J, et al. The opportunities and challenges of iron-zeolite as NH3-SCR catalyst in purification of vehicle exhaust [J]. Applied Catalysis A:General, 2020, 607: 117865. doi: 10.1016/j.apcata.2020.117865
[69] CHEN L, WANG X X, CONG Q L, et al. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3 [J]. Chemical Engineering Journal, 2019, 369: 957-967. doi: 10.1016/j.cej.2019.03.055
[70] LIU J X, LIU J, ZHAO Z, et al. Fe-Beta@CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3 [J]. AIChE Journal, 2017, 63(10): 4430-4441. doi: 10.1002/aic.15743
[71] WANG J C, PENG Z L, QIAO H, et al. Cerium-stabilized Cu-SSZ-13 catalyst for the catalytic removal of NOx by NH3 [J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1174-1182.
[72] USUI T, LIU Z D, IBE S, et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce [J]. ACS Catalysis, 2018, 8(10): 9165-9173. doi: 10.1021/acscatal.8b01949
[73] GUAN B, JIANG H, PENG X S, et al. Promotional effect and mechanism of the modification of Ce on the enhanced NH3-SCR efficiency and the low temperature hydrothermal stability over Cu/SAPO-34 catalysts [J]. Applied Catalysis A:General, 2021, 617: 118110. doi: 10.1016/j.apcata.2021.118110
[74] MARTINOVIC F, DEORSOLA F A, ARMANDI M, et al. Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation [J]. Applied Catalysis B:Environmental, 2021, 282: 119536. doi: 10.1016/j.apcatb.2020.119536
[75] GUO D Y, GUO R T, DUAN C P, et al. The enhanced K resistance of Cu-SSZ-13 catalyst for NH3-SCR reaction by the modification with Ce [J]. Molecular Catalysis, 2021, 502: 111392. doi: 10.1016/j.mcat.2021.111392
[76] TAN W, WANG J, CAI Y D, et al. Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NOx removal[J]. Catalysis Today, 2021.
[77] TAN W, WANG C Y, YU S H, et al. Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NOx removal by NH3-SCR [J]. Journal of Hazardous Materials, 2021, 416: 125826. doi: 10.1016/j.jhazmat.2021.125826
[78] YAO X J, WANG Z, YU S H, et al. Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR [J]. Applied Catalysis A:General, 2017, 542: 282-288. doi: 10.1016/j.apcata.2017.06.003
[79] DING S P, LIU F D, SHI X Y, et al. Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 [J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9497-9506.
[80] ALI S, CHEN L Q, YUAN F L, et al. Synergistic effect between copper and cerium on the performance of Cux-Ce0.5-x-Zr0.5 (x = 0.1-0.5) oxides catalysts for selective catalytic reduction of NO with ammonia [J]. Applied Catalysis B:Environmental, 2017, 210: 223-234. doi: 10.1016/j.apcatb.2017.03.065
[81] HE G Z, GAO M, PENG Y, et al. Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts [J]. Environmental Science & Technology, 2021, 55(10): 6995-7003.
[82] XU W Q, YU Y B, ZHANG C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst [J]. Catalysis Communications, 2008, 9(6): 1453-1457. doi: 10.1016/j.catcom.2007.12.012
[83] SHAN W P, LIU F D, HE H, et al. An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust [J]. Catalysis Today, 2012, 184(1): 160-165. doi: 10.1016/j.cattod.2011.11.013
[84] ZHANG L, ZOU W X, MA K L, et al. Sulfated temperature effects on the catalytic activity of CeO2 in NH3-selective catalytic reduction conditions [J]. The Journal of Physical Chemistry C, 2015, 119(2): 1155-1163. doi: 10.1021/jp511282c
[85] ZHANG L, LI L L, CAO Y, et al. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B:Environmental, 2015, 165: 589-598. doi: 10.1016/j.apcatb.2014.10.029
[86] TAN W, WANG J M, LI L L, et al. Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal [J]. Journal of Hazardous Materials, 2020, 388: 121729. doi: 10.1016/j.jhazmat.2019.121729
[87] TAN W, LIU A N, XIE S H, et al. Ce-Si mixed oxide: A high sulfur resistant catalyst in the NH3-SCR reaction through the mechanism-enhanced process [J]. Environmental Science & Technology, 2021, 55(6): 4017-4026.
[88] FRASER M P, CASS G R. Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control [J]. Environmental Science & Technology, 1998, 32(8): 1053-1057.
[89] ZHANG X Y, WANG H, WANG Z, et al. Adsorption and surface reaction pathway of NH3 selective catalytic oxidation over different Cu-Ce-Zr catalysts [J]. Applied Surface Science, 2018, 447: 40-48. doi: 10.1016/j.apsusc.2018.03.220
[90] NASSOS S, SVENSSON E E, BOUTONNET M, et al. The influence of Ni load and support material on catalysts for the selective catalytic oxidation of ammonia in gasified biomass [J]. Applied Catalysis B:Environmental, 2007, 74(1-2): 92-102. doi: 10.1016/j.apcatb.2007.01.015
[91] LEE S M, LEE H H, HONG S C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2 [J]. Applied Catalysis A:General, 2014, 470: 189-198. doi: 10.1016/j.apcata.2013.10.057
[92] GHOSH R S, LE T T, TERLIER T, et al. Enhanced selective oxidation of ammonia in a Pt/Al2O3@Cu/ZSM-5 core–shell catalyst [J]. ACS Catalysis, 2020, 10(6): 3604-3617. doi: 10.1021/acscatal.9b04288
[93] CHANG S Y, HARLE G, MA J L, et al. The effect of textural properties of CeO2-SiO2 mixed oxides on NH3-SCO activity of Pt/CeO2-SiO2 catalyst [J]. Applied Catalysis A:General, 2020, 604: 117775. doi: 10.1016/j.apcata.2020.117775
[94] WANG Z, QU Z, QUAN X, et al. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method [J]. Applied Catalysis B: Environmental. 2013, 134-135: 153-166.
[95] QU Z, WANG Z, ZHANG X, et al. Role of different coordinated Cu and reactive oxygen species on the highly active Cu–Ce–Zr mixed oxides in NH3-SCO: a combined in situ EPR and O2-TPD approach [J]. Catalysis Science & Technology. 2016, 6(12): 4491-4502.
[96] CHEN H L, LIU S H, HO J J. Theoretical calculation of the dehydrogenation of ethanol on a Rh/CeO2(111) surface [J]. The Journal of Physical Chemistry B, 2006, 110(30): 14816-14823. doi: 10.1021/jp0610259
[97] MAYERNICK A D, JANIK M J. Methane oxidation on Pd-Ceria: A DFT study of the mechanism over PdxCe1−xO2, Pd, and PdO [J]. Journal of Catalysis, 2011, 278(1): 16-25. doi: 10.1016/j.jcat.2010.11.006
[98] DUAN D, HAO C X, WANG L Q, et al. Rod-like nanoporous CeO2 modified by PdO nanoparticles for CO oxidation and methane combustion with high catalytic activity and water resistance [J]. Nanoscale Research Letters, 2019, 14(1): 199. doi: 10.1186/s11671-019-3029-4
[99] WU M W, LI W Z, ZHANG X, et al. Elucidation of the active phase in Pd-based catalysts supporting on octahedral CeO2 for low-temperature methane oxidation [J]. ChemistrySelect, 2021, 6(17): 4149-4159. doi: 10.1002/slct.202100511
[100] CHEN J J, HU W, HUANG F J, et al. Catalytic performance of a Pt-Rh/CeO2-ZrO2-La2O3-Nd2O3 three-way compress nature gas catalyst prepared by a modified double-solvent method [J]. Journal of Rare Earths, 2017, 35(9): 857-866. doi: 10.1016/S1002-0721(17)60987-6
[101] QIAO D S, LU G Z, LIU X H, et al. Preparation of Ce1−xFexO2 solid solution and its catalytic performance for oxidation of CH4 and CO [J]. Journal of Materials Science, 2011, 46(10): 3500-3506. doi: 10.1007/s10853-011-5256-7
[102] ZENG X R, ZHANG R B, XU X L, et al. Study on ceria-modified SnO2 for CO and CH4 oxidation [J]. Journal of Rare Earths, 2012, 30(10): 1013-1019. doi: 10.1016/S1002-0721(12)60171-9
[103] ZAMMIT M, DIMAGGIO C L, KIM C H, et al. Future Automotive Aftertreatment Solutions: The 150 oC Challenge Workshop Report[R]. Office of Scientific and Technical Information (OSTI), 2013.