[1] LARSEN T A. CO2-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective[J]. Water Research, 2015, 87: 513-521. doi: 10.1016/j.watres.2015.06.006
[2] JIM F. Encouraging energy efficiency in US wastewater treatment[J]. Water 21, 2011, 11(3): 32-34.
[3] 郝晓地, 金铭, 胡沅胜. 荷兰未来污水处理新框架——NEWs及其实践[J]. 中国给水排水, 2014, 30(20): 7-15. doi: 10.19853/j.zgjsps.1000-4602.2014.20.002
[4] 郝晓地, 任冰倩, 曹亚莉. 德国可持续污水处理工程典范——Steinhof厂[J]. 中国给水排水, 2014, 30(22): 6-11.
[5] 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱——奥地利Strass 污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5.
[6] 郝晓地, 魏静, 曹亚莉. 美国碳中和运行成功案例——Sheboygan污水处理厂[J]. 中国给水排水, 2014, 30(24): 1-6.
[7] VOURDOUBAS J. Irrigation of tree plantations with treated sewage effluents and use of the produced biomass for pellets production—A case study in Crete-Greece[J]. Journal of Chemical Engineering and Chemistry Research, 2015, 2: 824-831.
[8] ALI S M H, LENZEN M, SACK F, et al. Electricity generation and demand flexibility in wastewater treatment plants: benefits for 100% renewable electricity grids[J]. Applied Energy, 2020, 268: 114960. doi: 10.1016/j.apenergy.2020.114960
[9] MARNER S T, SCHRÖTER D, JARDIN N. Towards energy neutrality by optimising the activated sludge process of the WWTP Bochum-Ölbachtal[J]. Water Science and Technology, 2016, 73(12): 3057-3063. doi: 10.2166/wst.2016.142
[10] BEHÖRDE F U , Klima, energie und agrarwirtschaft. Abwasserreinigung des klärwerkverbundes köhlbrandhöft/dradenau in hamburg - welcome to the geoss information exchange datahub [EB/OL] (2019–06–20) [2021–07–12]. https://cloud.csiss.gmu.edu/uddi/en/dataset/abwasserreinigung-des-klarwerkverbundes-kohlbrandhoft-dradenau-in-hamburg.
[11] VOURDOUBAS J. Creation of zero carbon emissions wastewater treatment plants-a case study in Crete, Greece[J]. Energy and Environment Research, 2018, 8(1): 64-72. doi: 10.5539/eer.v8n1p64
[12] Turun seudun puhdistamo Oy, Kakolanmäen jätevedenpuhdistamon Tarkkailututkimus Vuosiraportti 2020[EB/OL][2021-2-25]. https://www.turunseudunpuhdistamo.fi/.
[13] 郝晓地, 赵梓丞, 李季等. 污水处理厂的能源与资源回收方式及其碳排放核算: 以芬兰Kakolanmäen污水处理厂为例[J]. 环境工程学报, 2021, 15(9): 2849-2857. doi: 10.12030/j.cjee.202106073
[14] 王向阳. 污水处理碳足迹核算及环境综合影响评价研究[D]. . 北京: 北京建筑大学, 2019.
[15] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Japan: IGES, 2006.
[16] KIM S W, MIYAHARA M, FUSHINOBU S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology, 2010, 101: 3958-3963. doi: 10.1016/j.biortech.2010.01.030
[17] TALLEC G, GARNIER J, BILLEN G, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level[J]. Water Research, 2006, 40: 2972-2980. doi: 10.1016/j.watres.2006.05.037
[18] YU R, KAMPSCHREUR M J, VAN LOOSDRECHT M C M, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science & Technology, 2010, 44: 1313-1319.
[19] 王淑莹, 委燕, 马斌, 等. 控制污水生物处理过程中N2O的释放[J]. 环境科学与技术, 2014, 37(7): 78-84.
[20] 付昆明, 张晓航, 刘凡奇, 等. 葡萄糖碳源条件下C/N对反硝化和N2O释放性能的影响[J]. 环境工程学报, 2021, 15(4): 1279-1288. doi: 10.12030/j.cjee.202010137
[21] WANG H, YANG Y, KELLER A A, et al. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa[J]. Applied Energy, 2016, 184: 873-881. doi: 10.1016/j.apenergy.2016.07.061
[22] NAKKASUNCHI S, HEWITT N J, ZOPPI C, et al. A review of energy optimization modelling tools for the decarbonisation of wastewater treatment plants[J]. Journal of Cleaner Production, 2021, 279: 123811. doi: 10.1016/j.jclepro.2020.123811
[23] HAO X, LI J, VAN LOOSDRECHT M C M, et al. Energy recovery from wastewater: Heat over organics[J]. Water Research, 2019, 161: 74-77. doi: 10.1016/j.watres.2019.05.106
[24] 郝晓地, 李季, 曹达啟. 污水处理碳中和运行需要污泥增量[J]. 中国给水排水, 2016, 32(12): 1-6. doi: 10.19853/j.zgjsps.1000-4602.2016.12.001
[25] 郝晓地, 张璇蕾, 刘然彬, 等. 剩余污泥转化能源的瓶颈与突破技术[J]. 中国给水排水, 2014, 30(18): 1-7. doi: 10.19853/j.zgjsps.1000-4602.2014.18.001
[26] HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87: 424-431. doi: 10.1016/j.watres.2015.05.050
[27] FERNÁNDEZ-ARÉVALO T, LIZARRALDE I, FDZ-POLANCO F, et al. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations[J]. Water Research, 2017, 118: 272-288. doi: 10.1016/j.watres.2017.04.001
[28] SCHAUM C, LENSCH D, BOLLE P Y, et al. Sewage sludge treatment: evaluation of the energy potential and methane emissions with COD balancing[J]. Journal Water Reuse Desalination, 2015, 5: 437-445. doi: 10.2166/wrd.2015.129
[29] FRIJNS J, HOFMAN J, NEDERLOF M. The potential of (waste)water as energy carrier[J]. Energy Conversion Management, 2013, 65: 357-363. doi: 10.1016/j.enconman.2012.08.023
[30] POWER C, MCNABOLA A, COUGHLAN P. Development of an evaluation method for hydropower energy recovery in wastewater treatment plants: case studies in Ireland and the UK[J]. Sustain Energy and Technology, 2014, 7: 166-177.
[31] CIPOLLA S S, MAGLIONICO M. Heat recovery from urban wastewater: Analysis of the variability of flow rate and temperature in the sewer of Bologna, Italy[J]. Energy Procedia 2014, 45, 288–297. https://doi.org/10.1016/j.egypro.2014.01.031
[32] ARIF H, EMRAH B, ORHAN E, et al. A key review of wastewater source heat pump (WWSHP) systems[J]. Energy Conversion and Management 2014, 88, 700–722. https://doi.org/10.1016/j.enconman.2014.08.065.
[33] MCCARTY P L, JAEHO B, JEONGHWAN K. Domestic wastewater treatment as a net energy producer-can this be achieved?[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106.
[34] HAO X D, CHEN Q, VAN LOOSDRECHT M C M, et al. Sustainable disposal of excess sludge: Incineration without anaerobic digestion[J]. Water Research, 2020, 170: 115298. doi: 10.1016/j.watres.2019.115298
[35] AVERFALK H, INGVARSSON P, PERSSON U. Large heat pumps in Swedish district heating systems[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1275-1284. doi: 10.1016/j.rser.2017.05.135
[36] Heat pump at Utrecht sewage treatment plant. https://www.eneco.com/what-we-do/sustainable-sources/heat-pump-at-utrecht-sewage-treatment-plant/[EB/OL], 2020.
[37] NEUGEBAUER G, STGLEHNER G. Realising energy potentials from wastewater by integrating spatial and energy planning[J]. Sustainable Sanitation Practice, 2015, 22: 15-21.
[38] GROSS T S C. Thermal drying of sewage sludge[J]. Water Environment Journal, 2010, 7: 255-261. doi: 10.1111/j.1747-6593.1993.tb00843.x
[39] MURAKAMI T, SUZUKI Y, NAGASAWA H, et al. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Processing Technology, 2009, 90: 778-783. doi: 10.1016/j.fuproc.2009.03.003
[40] 郝晓地, 张益宁, 李季, 等. 污水处理能源中和与碳中和案例分析[J]. 中国给水排水, 2021, 37(20): 1-8. doi: 10.19853/j.zgjsps.1000-4602.2021.20.001