[1] |
YANG P, FAN S K, CHEN Z Y, et al. Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs [J]. Applied Catalysis B:Environmental, 2018, 239: 114-124. doi: 10.1016/j.apcatb.2018.07.061
|
[2] |
LI H F, LU G Z, DAI Q G, et al. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres [J]. Applied Catalysis B:Environmental, 2011, 102(3/4): 475-483.
|
[3] |
钱翌, 岳飞飞, 褚衍洋. 三氯乙烯环境污染修复技术研究进展 [J]. 环境化学, 2012, 31(9): 1335-1343.
QIAN Y, YUE F F, CHU Y Y. Advances in environmental remediation technologies for trichloroethylene pollution [J]. Environmental Chemistry, 2012, 31(9): 1335-1343(in Chinese).
|
[4] |
TIAN M J, GUO X, DONG R, et al. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1, 2-dichloroethane destruction [J]. Applied Catalysis B:Environmental, 2019, 259: 118018. doi: 10.1016/j.apcatb.2019.118018
|
[5] |
HOLZER F, ROLAND U, KOPINKE F D. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume [J]. Applied Catalysis B:Environmental, 2002, 38(3): 163-181. doi: 10.1016/S0926-3373(02)00040-1
|
[6] |
VEERAPANDIAN S K P, YE Z P, GIRAUDON J M, et al. Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air [J]. Journal of Hazardous Materials, 2019, 379: 120781. doi: 10.1016/j.jhazmat.2019.120781
|
[7] |
DANG X Q, LI S J, YU X, et al. Kinetic characterization of adsorbed toluene removal involving hybrid material catalysts—[M/13X-γ-Al2O3 (M: Ag, Ce, Mn, and Co)] in a sequential non-thermal plasma system [J]. Chemical Engineering Research and Design, 2020, 155: 80-87. doi: 10.1016/j.cherd.2019.12.025
|
[8] |
NGUYEN DINH M T, GIRAUDON J M, VANDENBROUCKE A M, et al. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air [J]. Journal of Hazardous Materials, 2016, 314: 88-94. doi: 10.1016/j.jhazmat.2016.04.027
|
[9] |
姜理英, 张瑜芬, 胡俊, 等. NTP协同双金属锰基催化剂降解氯苯的性能研究 [J]. 环境科学学报, 2021, 41(3): 922-931.
JIANG L Y, ZHANG Y F, HU J, et al. Removal of chlorobenzene by non-thermal plasma combined with bimetallic manganese-based catalyst [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 922-931(in Chinese).
|
[10] |
SULTANA S, VANDENBROUCKE A M, MORA M, et al. Post plasma-catalysis for trichloroethylene decomposition over CeO2 catalyst: Synergistic effect and stability test [J]. Applied Catalysis B:Environmental, 2019, 253: 49-59. doi: 10.1016/j.apcatb.2019.03.077
|
[11] |
LIN F W, ZHANG Z M, LI N, et al. How to achieve complete elimination of Cl-VOCs: A critical review on byproducts formation and inhibition strategies during catalytic oxidation [J]. Chemical Engineering Journal, 2021, 404: 126534. doi: 10.1016/j.cej.2020.126534
|
[12] |
TODOROVA S, BLIN J L, NAYDENOV A, et al. Co3O4-MnOx oxides supported on SBA-15 for CO and VOCs oxidation [J]. Catalysis Today, 2020, 357: 602-612. doi: 10.1016/j.cattod.2019.05.018
|
[13] |
白文文, 秦彩虹, 郑洋, 等. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果 [J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
BAI W W, QIN C H, ZHENG Y, et al. Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst [J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1294-1303(in Chinese). doi: 10.12030/j.cjee.201907089
|
[14] |
ODA T, KURAMOCHI H, ONO R. Non-thermal plasma processing for dilute VOCs decomposition combined with the catalyst[C]. 11th International Conference on Electrostatic Precipitation. Hangzhou: Springer Berlin Heidelberg, 2009: 638-643.
|
[15] |
ZHANG Z M, XIANG L, LIN F W, et al. Catalytic deep degradation of Cl-VOCs with the assistance of ozone at low temperature over MnO2 catalysts [J]. Chemical Engineering Journal, 2021, 426: 130814. doi: 10.1016/j.cej.2021.130814
|
[16] |
YAO X H, ZHANG J, LIANG X Y, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system [J]. Chemosphere, 2019, 230: 479-487. doi: 10.1016/j.chemosphere.2019.05.075
|
[17] |
BOUKHA Z, GONZÁLEZ-PRIOR J, de RIVAS B, et al. Synthesis, characterisation and behaviour of Co/hydroxyapatite catalysts in the oxidation of 1, 2-dichloroethane [J]. Applied Catalysis B:Environmental, 2016, 190: 125-136. doi: 10.1016/j.apcatb.2016.03.005
|
[18] |
SHI C, WANG Y, ZHU A M, et al. MnxCo3−xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde [J]. Catalysis Communications, 2012, 28: 18-22. doi: 10.1016/j.catcom.2012.08.003
|
[19] |
LI X, ZHENG J K, LIU S, et al. A novel wormhole-like mesoporous hybrid MnCoOx catalyst for improved ethanol catalytic oxidation [J]. Journal of Colloid and Interface Science, 2019, 555: 667-675. doi: 10.1016/j.jcis.2019.07.062
|
[20] |
郭惠, 党小庆, 秦彩虹, 等. 低温等离子体催化降解甲苯的影响因素分析 [J]. 环境污染与防治, 2019, 41(12): 1422-1426.
GUO H, DANG X Q, QIN C H, et al. Influencing factors analysis of toluene degradation by low temperature plasma catalysis [J]. Environmental Pollution & Control, 2019, 41(12): 1422-1426(in Chinese).
|
[21] |
崔维怡, 王希越, 谭乃迪. 焙烧温度对Pt-FeOx/γ-Al2O3催化剂催化甲醛氧化性能的影响 [J]. 燃料化学学报, 2019, 47(8): 964-972. doi: 10.3969/j.issn.0253-2409.2019.08.009
CUI W Y, WANG X Y, TAN N D. Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation [J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 964-972(in Chinese). doi: 10.3969/j.issn.0253-2409.2019.08.009
|
[22] |
陈春雨, 刘彤, 王卉, 等. 低温等离子体与MnOx/γ-Al2O3协同催化降解正己醛 [J]. 催化学报, 2012, 33(6): 941-951.
CHEN C Y, LIU T, WANG H, et al. Removal of hexanal by non-thermal plasma and MnOx/γ-Al2O3 combination [J]. Chinese Journal of Catalysis, 2012, 33(6): 941-951(in Chinese).
|
[23] |
TANG W X, LI W H, LI D Y, et al. Synergistic effects in porous Mn–co mixed oxide nanorods enhance catalytic deep oxidation of benzene [J]. Catalysis Letters, 2014, 144(11): 1900-1910. doi: 10.1007/s10562-014-1340-3
|
[24] |
BO Z, ZHU J H, YANG S L, et al. Enhanced plasma-catalytic decomposition of toluene over Co–Ce binary metal oxide catalysts with high energy efficiency [J]. RSC Advances, 2019, 9(13): 7447-7456. doi: 10.1039/C9RA00794F
|
[25] |
CAI T, HUANG H, DENG W, et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts [J]. Applied Catalysis B:Environmental, 2015, 166/167: 393-405. doi: 10.1016/j.apcatb.2014.10.047
|
[26] |
ZHOU G L, HE X L, LIU S, et al. Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 932-941. doi: 10.1016/j.jiec.2014.04.035
|
[27] |
LUO Y J, ZHENG Y B, ZUO J C, et al. Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation [J]. Journal of Hazardous Materials, 2018, 349: 119-127. doi: 10.1016/j.jhazmat.2018.01.053
|
[28] |
LIN X T, LI S J, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation [J]. Applied Catalysis B:Environmental, 2018, 223: 91-102. doi: 10.1016/j.apcatb.2017.06.071
|
[29] |
BIESINGER M C, BROWN C, MYCROFT J R, et al. X-ray photoelectron spectroscopy studies of chromium compounds [J]. Surface and Interface Analysis, 2004, 36(12): 1550-1563. doi: 10.1002/sia.1983
|
[30] |
姚志伟, 黄武, 陈颖, 等. 低温等离子体结合锰基催化剂去除乙酸乙酯的研究 [J]. 环境科学学报, 2021, 41(6): 2311-2319.
YAO Z W, HUANG W, CHEN Y, et al. Removal of ethyl acetate by non-thermal plasma combined with manganese-based catalysts [J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2311-2319(in Chinese).
|
[31] |
于欣, 党小庆, 李世杰, 等. 单介质和双介质阻挡放电低温等离子体降解甲苯的比较 [J]. 环境工程学报, 2020, 14(4): 1033-1041. doi: 10.12030/j.cjee.201906002
YU X, DANG X Q, LI S J, et al. Comparison of single and double dielectric barrier discharge non-thermal plasma for toluene removal [J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1033-1041(in Chinese). doi: 10.12030/j.cjee.201906002
|
[32] |
朱金辉. 低温等离子体耦合Co-Ce二元金属氧化物催化剂降解甲苯基础研究[D]. 杭州: 浙江大学, 2020.
ZHU J H. Non-thermal plasma combined with co-Ce binary metal oxide catalysts for toluene decomposition[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
|
[33] |
KIM H H, KIM J H, OGATA A. Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles [J]. Journal of Physics D:Applied Physics, 2009, 42(13): 135210. doi: 10.1088/0022-3727/42/13/135210
|
[34] |
LIANG W J, MA L, LIU H, et al. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst [J]. Chemosphere, 2013, 92(10): 1390-1395. doi: 10.1016/j.chemosphere.2013.05.042
|
[35] |
ZHENG C H, ZHU X B, GAO X, et al. Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2761-2768. doi: 10.1016/j.jiec.2013.11.004
|
[36] |
SHOU T Y, LI Y N, BERNARDS M T, et al. Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: Byproduct control [J]. Journal of Hazardous Materials, 2020, 387: 121750. doi: 10.1016/j.jhazmat.2019.121750
|
[37] |
XU X X, WU J L, XU W C, et al. High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal [J]. Catalysis Today, 2017, 281: 527-533. doi: 10.1016/j.cattod.2016.03.036
|
[38] |
YU X, DANG X Q, LI S J, et al. A comparison of in- and post-plasma catalysis for toluene abatement through continuous and sequential processes in dielectric barrier discharge reactors [J]. Journal of Cleaner Production, 2020, 276: 124251. doi: 10.1016/j.jclepro.2020.124251
|
[39] |
LI S J, DANG X Q, YU X, et al. High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor [J]. Journal of Hazardous Materials, 2020, 400: 123259. doi: 10.1016/j.jhazmat.2020.123259
|
[40] |
KIRKPATRICK M, FINNEY W, LOCKE B. Chlorinated organic compound removal by gas phase pulsed streamer Corona electrical discharge with reticulated vitreous carbon electrodes [J]. Plasmas and Polymers, 2003, 8(3): 165-177. doi: 10.1023/A:1024845721132
|
[41] |
VANDENBROUCKE A M, DINH M T N, GIRAUDON J M, et al. Qualitative by-product identification of plasma-assisted TCE abatement by mass spectrometry and Fourier-transform infrared spectroscopy [J]. Plasma Chemistry and Plasma Processing, 2011, 31(5): 707-718. doi: 10.1007/s11090-011-9310-7
|